23 research outputs found

    7Be-recoil radiolabelling of industrially manufactured silica nanoparticles

    Get PDF
    Radiolabelling of industrially manufactured nanoparticles is useful for nanoparticle dosimetry in biodistribution or cellular uptake studies for hazard and risk assessment. Ideally for such purposes any chemical processing post production should be avoided as it may change the physico-chemical characteristics of the industrially manufactured species. In many cases proton irradiation of nanoparticles allows radiolabelling by transmutation of a tiny fraction of their constituent atoms into radionuclides. However, not all types of nanoparticles offer nuclear reactions leading to radionuclides with adequate radiotracer properties. We describe here a process whereby in such cases nanoparticles can be labelled with 7Be, which exhibits a physical halflife of 53.29 days and emits Ī³-rays of 478 keV energy and is suitable for most radiotracer studies. 7Be is produced via the proton-induced nuclear reaction 7Li(p,n)7Be in a fine-grained lithium compound with which the nanoparticles are mixed. The high recoil energy of 7Be-atoms gives them a range that allows the 7Be-recoils to be transferred from the lithium compound into the nanoparticles by recoil implantation. The nanoparticles can be recovered from the mixture by dissolving the lithium compound and subsequent filtration or centrifugation. The method has been applied to radiolabel industrially manufactured SiO2 nanoparticles. The process can be controlled in such a way that no alterations of the 7Be-labelled nanoparticles are detectable by dynamic light scattering, X-ray diffraction and electron microscopy. Moreover, cyclotrons with maximum proton energies of 17 to 18 MeV that are available in most medical research centres could be used for this purpose.JRC.I.4-Nanobioscience

    Synthetic Amorphous Silicon Dioxide (NM-200, NM-201, NM-202, NM-203, NM-204): Characterisation and Physico-Chemical Properties

    Get PDF
    The European Commission's Joint Research Centre (JRC) provides scientific support to European Union policy including nanotechnology. Within this context, the JRC launched, in February 2011, a repository for Representative Test Materials (RTMs), based on preparatory work started in 2008. It supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials (WPMN). The WPMN leads an exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The purpose is to understand the applicability of the OECD Test Guidelines for the testing of nanomaterials as well as end-points relevant for such materials. The Repository responds to a need for nanosafety research purposes: availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The availability of representative nanomaterials to the international scientific community furthermore enhances and enables development of safe materials and products. The present report presents the physico-chemical characterisation of the synthetic amorphous silicon dioxide (SiO2, SAS) from the JRC repository: NM-200, NM-201, NM-202, NM-203 and NM-204. NM-200 was selected as principal material for the OECD test programme "Testing a representative set of manufactured nanomaterials". NM-200, NM-201 and NM-204 (precipitated SAS) are produced via the precipitation process, whereas NM-202 and NM-203 (fumed or pyrogenic SAS) are produced via a high temperature process. Each of these NMs originates from one respective batch of commercially manufactured SAS. They are nanostructured, i.e. they consist of aggregated primary particles. The SAS NMs may be used as a representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results for more than 15 endpoints are addressed in the present report, including physical-chemical properties, such as size and size distribution, crystallite size and electron microscopy images. Sample and test item preparation procedures are addressed. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action, as well as the JRC.JRC.I.4-Nanobioscience

    Multi-walled Carbon Nanotubes, NM-400, NM-401, NM-402, NM-403: Characterisation and Physico-Chemical Properties

    Get PDF
    In 2011 the JRC launched a Repository for Representative Test Materials that supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials' (WPMN) exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The JRC Repository responds to a need for availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The present report presents the physico-chemical characterisation of the multi-walled carbon nanotubes (MWCNT) from the JRC Repository: NM-400, NM-401, NM-402 and NM-403. NM-400 was selected as principal material for the OECD WPMN testing programme. They are produced by catalytic chemical vapour deposition. Each of these NMs originates from one respective batch of commercially manufactured MWCNT. They are nanostructured, i.e. they consist of more than one graphene layer stacked on each other and rolled together as concentric tubes. The MWCNT NMs may be used as a representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action.JRC.I.4-Nanobioscience

    Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico-Chemical Properties

    Get PDF
    The European Commission's Joint Research Centre (JRC) provides scientific support to European Union policy including nanotechnology. Within this context, the JRC launched, in February 2011, a repository for Representative Test Materials (RTMs), based on preparatory work started in 2008. It supports both EU and international research projects, and especially the OECD Working Party on Manufactured Nanomaterials (WPMN). The WPMN leads an exploratory testing programme "Testing a Representative set of Manufactured Nanomaterials" for the development and collection of data on characterisation, toxicological and ecotoxicological properties, as well as risk assessment and safety evaluation of nanomaterials. The purpose is to understand the applicability of the OECD Test Guidelines for the testing of nanomaterials as well as end-points relevant for such materials. The Repository responds to a need for nanosafety research purposes: availability of nanomaterial from a single production batch to enhance the comparability of results between different research laboratories and projects. The availability of representative nanomaterials to the international scientific community furthermore enhances and enables development of safe materials and products. The present report presents the physico-chemical characterisation of the Titanium dioxide series from the JRC repository: NM-100, NM-101, NM-102, NM-103, NM-104 and NM-105. NM-105 was selected as principal material for the OECD test programme "Testing a representative set of manufactured nanomaterials". NM-100 is included in the series as a bulk comparator. Each of these NMs originates from one batch of commercially manufactured TiO2. The TiO2 NMs may be used as representative material in the measurement and testing with regard to hazard identification, risk and exposure assessment studies. The results for more than 15 endpoints are addressed in the present report, including physico-chemical properties, such as size and size distribution, crystallite size and electron microscopy images. Sample and test item preparation procedures are addressed. The results are based on studies by several European laboratories participating to the NANOGENOTOX Joint Action, as well as by the JRC.JRC.I.4-Nanobioscience

    Total hip arthroplasty : State of the art, prospects and challenges

    No full text
    Recently increasing revision rates of certain types of metal-on-metal (MoM) hip prostheses [1], introduced on the medical device market during the last decade, have created uncertainty concerning the safety and effectiveness of artificial hip joints [2]. Eventhough medical progress is generally expected to be a continuous process leading to improved medical treatment, problems occured with some hip-resurfacing systems that failed to deliver the expected improvement. Moreover, this created severe health problems for many patients worldwide [2]. This report reviews the historical development and the state-of-the-art of total hip arthroplasty from a biomedical engineering point of view and illustrates the motivation for the efforts to improve the quality of hip prostheses. The report also aims at explaining the peculiar problems related to evaluating the safety and effectiveness of hip prostheses, which are supposed to last for at least 20 to 25 years. Furthermore, it addresses some medical and biological aspects of total hip arthroplasty (THA).JRC.I-Institute for Health and Consumer Protection (Ispra

    Neutron Activation of Nanoparticles

    No full text
    Neutron activation of nanoparticles (NPs) can be a valid method to create radioactive NPs for biological and environmental tracers studies in a way that permits to overcome problems of high natural background of chemically equivalent materials in such matrices. Activation of NPs by neutron flux is mainly performed by exposing the NPs to the intense neutron flux of a nuclear research reactor. The activity level obtained can yield high concentrations, tipically in the range of 1ā€“100 MBq per mg of NPs. Other methods can be used but yield lower activity concentrations. This chapter reviews some of the work that has been done at IHCP/JRC Ispra and elsewhere in the field of neutron activation of NPs.JRC.I.4-Nanobioscience

    Direct Ion-Beam Activation of Nanoparticles

    No full text
    Tracing nanoparticles is not a simple matter. In many environments detection of their presence using compositional determination is severely limited due to background levels of their atomic constituents, so that only relatively large concentrations can be detected. In addition, it is sometimes necessary to also determine whether the nanoparticles are actually still in particulate form. For low concentrations this may be particularly challenging since structural analysis techniques such as X-ray diffraction or some spectroscopic methods generally lack the sensitivity required at low concentrations, and electron microscopy determination of nanoparticle concentrations in large samples is difficult, expensive, time consuming and may be prone to errors. This chapter covers the area of direct ion-beam activation of nanoparticles (NPs), a method that has been studied and optimised over several years, and which can be used to radiolabel certain types of dry nanoparticulate powders to useful activity levels without significant modification of the nanoparticle properties. If the radiolabels are stably incorporated into the nanoparticles this methods is by far the most sensitive and quantitative available for tracing of very small nanoparticle concentrations.JRC.I.4-Nanobioscience
    corecore