1,945 research outputs found

    The observed chemical structure of L1544

    Full text link
    Prior to star formation, pre-stellar cores accumulate matter towards the centre. As a consequence, their central density increases while the temperature decreases. Understanding the evolution of the chemistry and physics in this early phase is crucial to study the processes governing the formation of a star. We aim at studying the chemical differentiation of a prototypical pre-stellar core, L1544, by detailed molecular maps. In contrast with single pointing observations, we performed a deep study on the dependencies of chemistry on physical and external conditions. We present the emission maps of 39 different molecular transitions belonging to 22 different molecules in the central 6.25 arcmin2^2 of L1544. We classified our sample in five families, depending on the location of their emission peaks within the core. Furthermore, to systematically study the correlations among different molecules, we have performed the principal component analysis (PCA) on the integrated emission maps. The PCA allows us to reduce the amount of variables in our dataset. Finally, we compare the maps of the first three principal components with the H2_2 column density map, and the Tdust_{dust} map of the core. The results of our qualitative analysis is the classification of the molecules in our dataset in the following groups: (i) the cc-C3_3H2_2 family (carbon chain molecules), (ii) the dust peak family (nitrogen-bearing species), (iii) the methanol peak family (oxygen-bearing molecules), (iv) the HNCO peak family (HNCO, propyne and its deuterated isotopologues). Only HC18^{18}O+^+ and 13^{13}CS do not belong to any of the above mentioned groups. The principal component maps allow us to confirm the (anti-)correlations among different families that were described in a first qualitative analysis, but also points out the correlation that could not be inferred before.Comment: 29 pages, 19 figures, 2 appendices, accepted for publication in A&A, arXiv abstract has been slightly modifie

    O2 signature in thin and thick O2-H2O ices

    Full text link
    Aims. In this paper we investigate the detectability of the molecular oxygen in icy dust grain mantles towards astronomical objects. Methods. We present a systematic set of experiments with O2-H2O ice mixtures designed to disentangle how the molecular ratio affects the O2 signature in the mid- and near-infrared spectral regions. All the experiments were conducted in a closed-cycle helium cryostat coupled to a Fourier transform infrared spectrometer. The ice mixtures comprise varying thicknesses from 8 ×\times 103^{-3} to 3 μ\mum. The absorption spectra of the O2-H2O mixtures are also compared to the one of pure water. In addition, the possibility to detect the O2 in icy bodies and in the interstellar medium is discussed. Results. We are able to see the O2 feature at 1551 cm1^{-1} even for the most diluted mixture of H2O : O2 = 9 : 1, comparable to a ratio of O2/H2O = 10 % which has already been detected in situ in the coma of the comet 67P/Churyumov-Gerasimenko. We provide an estimate for the detection of O2 with the future mission of the James Webb Space Telescope (JWST).Comment: 11 pages, 10 figures, article in press, to appear in A&A 201

    A study of the cc-C3HD\mathrm{C_{3}HD}/cc-C3H2\mathrm{C_{3}H_{2}} ratio in low-mass star forming regions

    Full text link
    We use the deuteration of cc-C3H2\mathrm{C_{3}H_{2}} to probe the physical parameters of starless and protostellar cores, related to their evolutionary states, and compare it to the N2H+\mathrm{N_{2}H^{+}}-deuteration in order to study possible differences between the deuteration of C- and N-bearing species. We observed the main species cc-C3H2\mathrm{C_{3}H_{2}}, the singly and doubly deuterated species cc-C3HD\mathrm{C_{3}HD} and cc-C3D2\mathrm{C_{3}D_{2}}, as well as the isotopologue cc-H13CC2H\mathrm{{H^{13}CC_{2}H}} toward 10 starless cores and 5 protostars in the Taurus and Perseus Complexes. We examined the correlation between the NN(cc-C3HD\mathrm{C_{3}HD})/NN(cc-C3H2\mathrm{C_{3}H_{2}}) ratio and the dust temperature along with the H2\mathrm{H_2} column density and the CO depletion factor. The resulting NN(cc-C3HD\mathrm{C_{3}HD})/NN(cc-C3H2\mathrm{C_{3}H_{2}}) ratio is within the error bars consistent with 10%10\% in all starless cores with detected cc-C3HD\mathrm{C_{3}HD}. This also accounts for the protostars except for the source HH211, where we measure a high deuteration level of 23%23\%. The deuteration of N2H+\mathrm{N_{2}H^{+}} follows the same trend but is considerably higher in the dynamically evolved core L1544. Toward the protostellar cores the coolest objects show the largest deuterium fraction in cc-C3H2\mathrm{C_{3}H_{2}}. We show that the deuteration of cc-C3H2\mathrm{C_{3}H_{2}} can trace the early phases of star formation and is comparable to that of N2H+\mathrm{N_{2}H^{+}}. However, the largest cc-C3H2\mathrm{C_{3}H_{2}} deuteration level is found toward protostellar cores, suggesting that while cc-C3H2\mathrm{C_{3}H_{2}} is mainly frozen onto dust grains in the central regions of starless cores, active deuteration is taking place on ice

    Acute pain management in children: A survey of Italian pediatricians

    Get PDF
    Background: Current guidelines recommend assessing and relieving pain in all children and in all instances; yet, in clinical practice, management is frequently suboptimal. We investigated the attitude of Italian family pediatricians towards the evaluation and treatment of different types of acute pain in children aged 7-12 years. Methods: This is a cross-sectional study based on a 17-question survey accessible online from October 2017 to October 2018. Responders had to describe cases of children suffering from any type of acute pain among headache, sore throat, musculoskeletal/post-traumatic pain, and earache. Children's characteristics, pain assessment modalities and therapeutic approaches were queried. The following tests were used: Z-proportion to evaluate the distribution of categorical data; chi-squared and Kruskall-Wallis to explore data heterogeneity across groups; Mann-Whitney for head-to-head comparisons. Results: Overall, 929 pediatricians presented 6335 cases uniformly distributed across the types examined. Pain was more frequently of moderate intensity (42.2%, P < 0.001) and short duration (within some days: 98.4%, P < 0.001). Only 50.1% of responders used an algometric scale to measure pain and 60.5% always prescribed a treatment. In children with mild-moderate pain (N = 4438), the most commonly used first-line non-opioids were ibuprofen (53.3%) and acetaminophen (44.4%). Importantly, a non-recommended dosage was prescribed in only 5.3% of acetaminophen-treated cases (overdosing). Among the misconceptions emerged, there were the following: I) ibuprofen and acetaminophen have different efficacy and safety profiles (when choosing the non-opioid, effectiveness weighted more for ibuprofen [79.7% vs 74.3%, P < 0.001] and tolerability for acetaminophen [74.0% vs 55.4%, P < 0.001]); ii) ibuprofen must be taken after meals to prevent gastric toxicities (52.5%); ibuprofen and acetaminophen can be used combined/alternated for persisting mild-moderate pain (16.1%). In case of moderate-severe pain not completely controlled by opioids, ibuprofen and acetaminophen were the most used add-on medications, with ibuprofen being much more prescribed than acetaminophen (65.2% vs 23.7%, respectively) overall and in all pain types. Conclusions: Several gaps exist between the current practice of pain assessment and treatment and recommendations. Further efforts are needed to raise awareness and improve education on the possible exposure of the child to short- A nd long-term consequences in case of suboptimal pain management

    High Speed Visible Light Communication Using Blue GaN Laser Diodes

    Get PDF
    GaN-based laser diodes have been developed over the last 20 years making them desirable for many security and defence applications, in particular, free space laser communications. Unlike their LED counterparts, laser diodes are not limited by their carrier lifetime which makes them attractive for high speed communication, whether in free space, through fiber or underwater. Gigabit data transmission can be achieved in free space by modulating the visible light from the laser with a pseudo-random bit sequence (PRBS), with recent results approaching 5 Gbit/s error free data transmission. By exploiting the low-loss in the blue part of the spectrum through water, data transmission experiments have also been conducted to show rates of 2.5 Gbit/s underwater. Different water types have been tested to monitor the effect of scattering and to see how this affects the overall transmission rate and distance. This is of great interest for communication with unmanned underwater vehicles (UUV) as the current method using acoustics is much slower and vulnerable to interception. These types of laser diodes can typically reach 50-100 mW of power which increases the length at which the data can be transmitted. This distance could be further improved by making use of high power laser arrays. Highly uniform GaN substrates with low defectivity allow individually addressable laser bars to be fabricated. This could ultimately increase optical power levels to 4 W for a 20-emitter array. Overall, the development of GaN laser diodes will play an important part in free space optical communications and will be vital in the advancement of security and defence applications

    Mapping deuterated methanol toward L1544: I. Deuterium fraction and comparison with modeling

    Full text link
    The study of deuteration in pre-stellar cores is important to understand the physical and chemical initial conditions in the process of star formation. In particular, observations toward pre-stellar cores of methanol and deuterated methanol, solely formed on the surface of dust grains, may provide useful insights on surface processes at low temperatures. Here we analyze maps of CO, methanol, formaldehyde and their deuterated isotopologues toward a well-known pre-stellar core. This study allows us to test current gas-dust chemical models. Single-dish observations of CH3_3OH, CH2_2DOH, H2_2CO, H_2\,^{13}CO, HDCO, D2_2CO and C17^{17}O toward the prototypical pre-stellar core L1544 were performed at the IRAM 30 m telescope. We analyze their column densities, distributions, and compare these observations with gas-grain chemical models. The maximum deuterium fraction derived for methanol is [CH2_2DOH]/[CH3_3OH] \sim 0.08±\pm0.02, while the measured deuterium fractions of formaldehyde at the dust peak are [HDCO]/[H2_2CO] \sim 0.03±\pm0.02, [D2_2CO]/[H2_2CO] \sim 0.04±\pm0.03 and [D2_2CO]/[HDCO] \sim 1.2±\pm0.3. Observations differ significantly from the predictions of models, finding discrepancies between a factor of 10 and a factor of 100 in most cases. It is clear though that to efficiently produce methanol on the surface of dust grains, quantum tunneling diffusion of H atoms must be switched on. It also appears that the currently adopted reactive desorption efficiency of methanol is overestimated and/or that abstraction reactions play an important role. More laboratory work is needed to shed light on the chemistry of methanol, an important precursor of complex organic molecules in space.Comment: Accepted for publication in A&

    Hundred photon microwave ionization of Rydberg atoms in a static electric field

    Full text link
    We present analytical and numerical results for the microwave excitation of nonhydrogenic atoms in a static electric field when up to 1000 photons are required to ionize an atom. For small microwave fields, dynamical localization in photon number leads to exponentially small ionization while above quantum delocalization border ionization goes in a diffusive way. For alkali atoms in a static field the ionization border is much lower than in hydrogen due to internal chaos.Comment: revtex, 4 pages, 5 figure

    Kondo tunneling through real and artificial molecules

    Full text link
    When a cerocene molecule is chemisorbed on metallic substrate, or when an asymmetric double dot is hybridized with itinerant electrons, its singlet ground state crosses its lowly excited triplet state, leading to a competition between the Zhang-Rice mechanism of singlet-triplet splitting in a confined cluster and the Kondo effect (which accompanies the tunneling through quantum dot under a Coulomb blockade restriction). The rich physics of an underscreened S=1 Kondo impurity in the presence of low-lying triplet/singlet excitations is exposed. Estimates of the magnetic susceptibility and the electric conductance are presented.Comment: 4 two-column revtex pages including 1 eps figur

    Linear Kondo conductance in a quantum dot

    Full text link
    In a tunneling experiment across a quantum dot it is possible to change the coupling between the dot and the contacts at will, by properly tuning the trasparency of the barriers and the temperature. Gate voltages allow for changes of the relative position of the dot addition energies and the Fermi level of the leads. Here we discuss the two limiting cases: weak and strong coupling in the tunneling Hamiltonian. In the latter case Kondo resonant conductance can emerge at low temperature in a Coulomb blockade valley. We give a pedagogical approach to the single-channel Kondo physics at equilibrium and review the Nozieres scattering picture of the correlated fixed point. We emphasize the effect of an applied magnetic field and show how an orbital Kondo effect can take place in vertical quantum dots tuned both to an even and to an odd number of electrons at a level crossing. We extend the approach to the two-channel overscreened Kondo case and discuss recent proposals for detecting the non-Fermi liquid fixed point which could be reached at strong coupling.Comment: 31 pages, invited review articl
    corecore