7,656 research outputs found

    Data Mining to Uncover Heterogeneous Water Use Behaviors From Smart Meter Data

    Get PDF
    Knowledge on the determinants and patterns of water demand for different consumers supports the design of customized demand management strategies. Smart meters coupled with big data analytics tools create a unique opportunity to support such strategies. Yet, at present, the information content of smart meter data is not fully mined and usually needs to be complemented with water fixture inventory and survey data to achieve detailed customer segmentation based on end use water usage. In this paper, we developed a data‐driven approach that extracts information on heterogeneous water end use routines, main end use components, and temporal characteristics, only via data mining existing smart meter readings at the scale of individual households. We tested our approach on data from 327 households in Australia, each monitored with smart meters logging water use readings every 5 s. As part of the approach, we first disaggregated the household‐level water use time series into different end uses via Autoflow. We then adapted a customer segmentation based on eigenbehavior analysis to discriminate among heterogeneous water end use routines and identify clusters of consumers presenting similar routines. Results revealed three main water end use profile clusters, each characterized by a primary end use: shower, clothes washing, and irrigation. Time‐of‐use and intensity‐of‐use differences exist within each class, as well as different characteristics of regularity and periodicity over time. Our customer segmentation analysis approach provides utilities with a concise snapshot of recurrent water use routines from smart meter data and can be used to support customized demand management strategies.TU Berlin, Open-Access-Mittel - 201

    Froth-like minimizers of a non local free energy functional with competing interactions

    Full text link
    We investigate the ground and low energy states of a one dimensional non local free energy functional describing at a mean field level a spin system with both ferromagnetic and antiferromagnetic interactions. In particular, the antiferromagnetic interaction is assumed to have a range much larger than the ferromagnetic one. The competition between these two effects is expected to lead to the spontaneous emergence of a regular alternation of long intervals on which the spin profile is magnetized either up or down, with an oscillation scale intermediate between the range of the ferromagnetic and that of the antiferromagnetic interaction. In this sense, the optimal or quasi-optimal profiles are "froth-like": if seen on the scale of the antiferromagnetic potential they look neutral, but if seen at the microscope they actually consist of big bubbles of two different phases alternating among each other. In this paper we prove the validity of this picture, we compute the oscillation scale of the quasi-optimal profiles and we quantify their distance in norm from a reference periodic profile. The proof consists of two main steps: we first coarse grain the system on a scale intermediate between the range of the ferromagnetic potential and the expected optimal oscillation scale; in this way we reduce the original functional to an effective "sharp interface" one. Next, we study the latter by reflection positivity methods, which require as a key ingredient the exact locality of the short range term. Our proof has the conceptual interest of combining coarse graining with reflection positivity methods, an idea that is presumably useful in much more general contexts than the one studied here.Comment: 38 pages, 2 figure

    Heavy Superheated Droplet Detectors as a Probe of Spin-independent WIMP Dark Matter Existence

    Full text link
    At present, application of Superheated Droplet Detectors (SDDs) in WIMP dark matter searches has been limited to the spin-dependent sector, owing to the general use of fluorinated refrigerants which have high spin sensitivity. Given their recent demonstration of a significant constraint capability with relatively small exposures and the relative economy of the technique, we consider the potential impact of heavy versions of such devices on the spin-independent sector. Limits obtainable from a CF3I\mathrm{CF_{3}I}-loaded SDD are estimated on the basis of the radiopurity levels and backgrounds already achieved by the SIMPLE and PICASSO experiments. With 34 kgd exposure, equivalent to the current CDMS, such a device may already probe to below 106^{-6} pb in the spin-independent cross section.Comment: 9 pages, 4 figures, accepted Phys. Rev.

    Rejection of randomly coinciding events in ZnMoO4_4 scintillating bolometers

    Full text link
    Random coincidence of events (particularly from two neutrino double beta decay) could be one of the main sources of background in the search for neutrinoless double beta decay with cryogenic bolometers due to their poor time resolution. Pulse-shape discrimination by using front edge analysis, mean-time and χ2\chi^2 methods was applied to discriminate randomly coinciding events in ZnMoO4_4 cryogenic scintillating bolometers. These events can be effectively rejected at the level of 99% by the analysis of the heat signals with rise-time of about 14 ms and signal-to-noise ratio of 900, and at the level of 92% by the analysis of the light signals with rise-time of about 3 ms and signal-to-noise ratio of 30, under the requirement to detect 95% of single events. These rejection efficiencies are compatible with extremely low background levels in the region of interest of neutrinoless double beta decay of 100^{100}Mo for enriched ZnMoO4_4 detectors, of the order of 10410^{-4} counts/(y keV kg). Pulse-shape parameters have been chosen on the basis of the performance of a real massive ZnMoO4_4 scintillating bolometer. Importance of the signal-to-noise ratio, correct finding of the signal start and choice of an appropriate sampling frequency are discussed

    Time-dependent density functional theory on a lattice

    Full text link
    A time-dependent density functional theory (TDDFT) for a quantum many-body system on a lattice is formulated rigorously. We prove the uniqueness of the density-to-potential mapping and demonstrate that a given density is vv-representable if the initial many-body state and the density satisfy certain well defined conditions. In particular, we show that for a system evolving from its ground state any density with a continuous second time derivative is vv-representable and therefore the lattice TDDFT is guaranteed to exist. The TDDFT existence and uniqueness theorem is valid for any connected lattice, independently of its size, geometry and/or spatial dimensionality. The general statements of the existence theorem are illustrated on a pedagogical exactly solvable example which displays all details and subtleties of the proof in a transparent form. In conclusion we briefly discuss remaining open problems and directions for a future research.Comment: 12 pages, 1 figur

    Universal conductivity and dimensional crossover in multi-layer graphene

    Full text link
    We show, by exact Renormalization Group methods, that in multi-layer graphene the dimensional crossover energy scale is decreased by the intra-layer interaction, and that for temperatures and frequencies greater than such scale the conductivity is close to the one of a stack of independent layers up to small corrections
    corecore