41 research outputs found

    Progressive myoclonus epilepsies due to SEMA6B mutations. New variants and appraisal of published phenotypes

    Get PDF
    Variants of SEMA6B have been identified in an increasing number of patients, often presenting with progressive myoclonus epilepsy (PME), and to lesser extent developmental encephalopathy, with or without epilepsy. The exon 17 is mainly involved, with truncating mutations causing the production of aberrant proteins with toxic gain of function. Herein, we describe three adjunctive patients carrying de novo truncating SEMA6B variants in this exon (c.1976delC and c.2086C > T novel; c.1978delC previously reported). These subjects presented with PME preceded by developmental delay, motor and cognitive impairment, worsening myoclonus, and epilepsy with polymorphic features, including focal to bilateral seizures in two, and non-convulsive status epilepticus in one. The evidence of developmental delay in these cases suggests their inclusion in the “PME plus developmental delay” nosological group. This work further expands our knowledge of SEMA6B variants causing PMEs. However, the data to date available confirms that phenotypic features do not correlate with the type or location of variants, aspects that need to be further clarified by future studie

    The mRNA-1273 Vaccine Induces Cross-Variant Antibody Responses to SARS-CoV-2 With Distinct Profiles in Individuals With or Without Pre-Existing Immunity

    Get PDF
    mRNA-based vaccines effectively induce protective neutralizing antibodies against SARS-CoV-2, the etiological agent of COVID-19. Yet, the kinetics and compositional patterns of vaccine-induced antibody responses to the original strain and emerging variants of concern remain largely unknown. Here we characterized serum antibody classes and subclasses targeting the spike receptor-binding domain of SARS-CoV-2 wild type and α, β, γ and δ variants in a longitudinal cohort of SARS-CoV-2 naïve and COVID-19 recovered individuals receiving the mRNA-1273 vaccine. We found that mRNA-1273 vaccine recipients developed a SARS-CoV-2-specific antibody response with a subclass profile comparable to that induced by natural infection. Importantly, these antibody responses targeted both wild type SARS-CoV-2 as well as its α, β, γ and δ variants. Following primary vaccination, individuals with pre-existing immunity showed higher induction of all antibodies but IgG3 compared to SARS-CoV-2-naïve subjects. Unlike naïve individuals, COVID-19 recovered subjects did not mount a recall antibody response upon the second vaccine dose. In these individuals, secondary immunization resulted in a slight reduction of IgG1 against the receptor-binding domain of β and γ variants. Despite the lack of recall humoral response, vaccinees with pre-existing immunity still showed higher titers of IgG1 and IgA to all variants analyzed compared to fully vaccinated naïve individuals. Our findings indicate that mRNA-1273 vaccine triggered cross-variant antibody responses with distinct profiles in vaccinees with or without pre-existing immunity and suggest that individuals with prior history of SARS-CoV-2 infection may not benefit from the second mRNA vaccine dose with the current standard regimen

    Innate lymphoid cells integrate stromal and immune signals to enhance antibody production by splenic marginal zone B cells

    Get PDF
    Innate lymphoid cells (ILCs) regulate stromal, epithelial and immune cells, but their impact on B cells remains unclear. We identified RORγt + ILCs nearby the marginal zone (MZ), a splenic compartment containing innate-like B cells that respond to circulating T cell-independent (TI) antigens. Spenic ILCs established a bidirectional crosstalk with MAdCAM-1 + marginal reticular cells by providing tumor necrosis factor (TNF) and lymphotoxin, and activated MZ B cells via BAFF, CD40 ligand and the Notch ligand, Delta-like 1. Splenic ILCs further helped MZ B cells and their plasma cell progeny by co-opting neutrophils through the release of GM-CSF. Consequently, ILC depletion impaired both pre- and post-immune TI antibody responses. Thus, ILCs integrate stromal and myeloid signals to orchestrate innate-like antibody production at the interface between the immune and circulatory systems

    Human Secretory IgM Emerges from Plasma Cells Clonally Related to Gut Memory B Cells and Targets Highly Diverse Commensals

    Get PDF
    Secretory immunoglobulin A (SIgA) enhances host-microbiota symbiosis, whereas SIgM remains poorly understood. We found that gut IgM+ plasma cells (PCs) were more abundant in humans than mice and clonally related to a large repertoire of memory IgM+ B cells disseminated throughout the intestine but rare in systemic lymphoid organs. In addition to sharing a gut-specific gene signature with memory IgA+ B cells, memory IgM+ B cells were related to some IgA+ clonotypes and switched to IgA in response to T cell-independent or T cell-dependent signals. These signals induced abundant IgM which, together with SIgM from clonally affiliated PCs, recognized mucus-embedded commensals. Bacteria recognized by human SIgM were dually coated by SIgA and showed increased richness and diversity compared to IgA-only-coated or uncoated bacteria. Thus, SIgM may emerge from pre-existing memory rather than newly activated naive IgM+ B cells and could help SIgA to anchor highly diverse commensal communities to mucus. Magri et al. found that the human gut includes a large memory IgM+ B cell repertoire clonally related to plasma cells mounting SIgM responses against mucus-embedded commensals co-targeted by SIgA. Dually coated bacteria are detected in humans but not mice and show increased diversity and richness compared to SIgA-only-coated or uncoated bacteria.</p

    Human Secretory IgM Emerges from Plasma Cells Clonally Related to Gut Memory B Cells and Targets Highly Diverse Commensals

    Get PDF
    Secretory immunoglobulin A (SIgA) enhances host-microbiota symbiosis, whereas SIgM remains poorly understood. We found that gut IgM+ plasma cells (PCs) were more abundant in humans than mice and clonally related to a large repertoire of memory IgM+ B cells disseminated throughout the intestine but rare in systemic lymphoid organs. In addition to sharing a gut-specific gene signature with memory IgA+ B cells, memory IgM+ B cells were related to some IgA+ clonotypes and switched to IgA in response to T cell-independent or T cell-dependent signals. These signals induced abundant IgM which, together with SIgM from clonally affiliated PCs, recognized mucus-embedded commensals. Bacteria recognized by human SIgM were dually coated by SIgA and showed increased richness and diversity compared to IgA-only-coated or uncoated bacteria. Thus, SIgM may emerge from pre-existing memory rather than newly activated naive IgM+ B cells and could help SIgA to anchor highly diverse commensal communities to mucus. Magri et al. found that the human gut includes a large memory IgM+ B cell repertoire clonally related to plasma cells mounting SIgM responses against mucus-embedded commensals co-targeted by SIgA. Dually coated bacteria are detected in humans but not mice and show increased diversity and richness compared to SIgA-only-coated or uncoated bacteria.</p

    Spanish cohort of VEXAS syndrome : clinical manifestations, outcome of treatments and novel evidences about UBA1 mosaicism

    Get PDF
    The vacuoles, E1-enzyme, X linked, autoinflammatory and somatic (VEXAS) syndrome is an adult-onset autoinflammatory disease (AID) due to postzygotic UBA1 variants. To investigate the presence of VEXAS syndrome among patients with adult-onset undiagnosed AID. Additional studies evaluated the mosaicism distribution and the circulating cytokines. Gene analyses were performed by both Sanger and amplicon-based deep sequencing. Patients' data were collected from their medical charts. Cytokines were quantified by Luminex. Genetic analyses of enrolled patients (n=42) identified 30 patients carrying UBA1 pathogenic variants, with frequencies compatible for postzygotic variants. All patients were male individuals who presented with a late-onset disease (mean 67.5 years; median 67.0 years) characterised by cutaneous lesions (90%), fever (66.7%), pulmonary manifestations (66.7%) and arthritis (53.3%). Macrocytic anaemia and increased erythrocyte sedimentation rate and ferritin were the most relevant analytical abnormalities. Glucocorticoids ameliorated the inflammatory manifestations, but most patients became glucocorticoid-dependent. Positive responses were obtained when targeting the haematopoietic component of the disease with either decitabine or allogeneic haematopoietic stem cell transplantation. Additional analyses detected the UBA1 variants in both haematopoietic and non-haematopoietic tissues. Finally, analysis of circulating cytokines did not identify inflammatory mediators of the disease. Thirty patients with adult-onset AID were definitively diagnosed with VEXAS syndrome through genetic analyses. Despite minor interindividual differences, their main characteristics were in concordance with previous reports. We detected for the first time the UBA1 mosaicism in non-haematopoietic tissue, which questions the previous concept of myeloid-restricted mosaicism and may have conceptual consequences for the disease mechanisms

    Characterization of natural Killer cell response to human cytomegalovirus infected dentrilic cells

    No full text
    S'ha establert un sistema experimental autòleg per a poder estudiar la resposta de les cèl.lules Natural Killer (NK) contra les cèl.lules dendrítiques derivades de monòcits (moDC), infectades pel Cytomegalovirus humà (HCMV). Els nostres resultats mostren que les cèl.lules NK responen contra les moDC infectades per HCMV, que presenten una expressió de les molècules MHC de classe I a superficie reduïda. Específicament, demostrem que la infecció per HCMV disminueix l'expressió en superficie d'HLA-E en les moDC, alliberant així la inhibició de les cèl.lules NK NKG2A+. Mostrem que els NKR anomenats NKp46 i DNAM-1 tenen un paper dominant en el reconeixement de les moDC infectades per HCMV i evidenciem la importància de la dinàmica dels mecanismes d'immunoevassió en la susceptibilitat a la resposta NK. Finalment, trobem que els interferons de tipus I i la IL-12 secretats en resposta a la infecció per HCMV, a més de participar en l'activació de la cèl.lula NK i en la secreció d'IFN-, inhibeixen l'expressió i la funció de NKG2D en les cèl.lules NK, com un mecanisme de regulació potencial per prevenir la reactivitat NK contra cèl.lules veïnes sanes.Suitable experimental conditions have been established to dissect the role of NK cell receptors (NKR) and cytokines in the NK cell response against autologous human cytomegalovirus (HCMV) infected monocyte derived dendritic cells (moDC). Our results reveal that NK cells are capable of responding to HCMV infected moDC that have down-regulated surface MHC class I molecules. In particular, we prove that HCMV infection decreases surface HLA-E expression on moDC, thus releasing NKG2A+ NK cells from inhibition. We show that NKp46 and DNAM-1 NKR play a dominant role in the recognition of HCMV infected moDC and we provide evidences stressing the importance of the dynamics of viral immune evasion mechanisms in NK cell susceptibility. Finally, we find that type I interferons and IL-12 secreted in response to HCMV infection, beyond their participation in NK cell activation and IFN- secretion, transiently inhibit the expression and function of NKG2D in NK cells, thus providing a potential regulatory feedback mechanism to prevent NK cell reactivity against bystander healthy cells

    Copycat innate lymphoid cells dampen gut inflammation.

    No full text
    The mechanisms whereby the gut mucosa tolerates trillions of commensal bacteria without developing inflammation remain poorly understood. A recent Science article reveals that gut innate lymphoid cells constrain inflammatory T cell responses to commensal bacteria by adopting a strategy usually deployed by thymic epithelial cells to negatively select self-reactive T cells

    Role of group 3 innate lymphoid cells in antibody production

    No full text
    Innate lymphoid cells (ILCs) constitute a heterogeneous family of effector lymphocytes of the innate immune system that mediate lymphoid organogenesis, tissue repair, immunity and inflammation. The initial view that ILCs exert their protective functions solely during the innate phase of an immune response has been recently challenged by evidence indicating that ILCs shape adaptive immunity by establishing both contact-dependent and contact-independent interactions with multiple hematopoietic and non-hematopoietic cells, including B cells. Some of these interactions enhance antibody responses both systemically and at mucosal sites of entrySupported by European Research Council under the European Union’s Seven Framework Programme (FP7/2007-2013)/ERC grant agreement n8 294561, Ministerio de Ciencia e Innovacio´n grant SAF2011-25241, and US National Institutes of Health grants R01 AI57653, U01 AI95613, P01 AI61093 and U19 096187 to A.C.; and by a Juan de la Cierva post-doctoral fellowships to G.M

    IgTreeZ, A toolkit for immunoglobulin gene lineage tree-based analysis, reveals CDR3s are crucial for selection analysis

    No full text
    Somatic hypermutation (SHM) is an important diversification mechanism that plays a part in the creation of immune memory. Immunoglobulin (Ig) variable region gene lineage trees were used over the last four decades to model SHM and the selection mechanisms operating on B cell clones. We hereby present IgTreeZ (Immunoglobulin Tree analyZer), a python-based tool that analyses many aspects of Ig gene lineage trees and their repertoires. Using simulations, we show that IgTreeZ can be reliably used for mutation and selection analyses. We used IgTreeZ on empirical data, found evidence for different mutation patterns in different B cell subpopulations, and gained insights into antigen-driven selection in corona virus disease 19 (COVID-19) patients. Most importantly, we show that including the CDR3 regions in selection analyses - which is only possible if these analyses are lineage tree-based - is crucial for obtaining correct results. Overall, we present a comprehensive lineage tree analysis tool that can reveal new biological insights into B cell repertoire dynamics.HN was supported by a Bar-Ilan University President’s Scholarship. AC is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) grant RTI2018-093894-B-100. GM is supported by Spanish Institute of Health Carlos III (Miguel Servet grant 2020-2024)
    corecore