34 research outputs found
Role of fluorine in suppressing boron transient enhanced diffusion in preamorphized Si
We have explained the role of fluorine in the reduction of the self-interstitial population in a preamorphized Si layer under thermal treatment. For this purpose, we have employed a B spike layer grown by molecular-beam epitaxy as a marker for the self-interstitial local concentration. The amorphized samples were implanted with 731012, 731013, or 431014 F/cm2 at 100 keV, and afterwards recrystallized by solid phase epitaxy. Thermal anneals at 750 or 850 °C were performed in order to induce the release of self-interstitials from the end-of-range (EOR) defects and thus provoke the transient enhanced diffusion of B atoms. We have shown that the incorporation of F reduces the B enhanced diffusion in a controlled way, up to its complete suppression. It is seen that no direct interaction between B and F occurs, whereas the suppression of B enhanced diffusion is related to the F ability in reducing the excess of silicon self-interstitials emitted by the EOR source. These results are reported and discussed
Nanoporous Ge electrode as a template for nano-sized (<5 nm) Au aggregates
none8In this paper we present the extremely peculiar electrical properties of nanoporous Ge. A full
and accurate electrical characterization showed an unexpected and extremely high
concentration of positive carriers. Electrochemical analyses showed that nanoporous Ge has
improved charge transfer properties with respect to bulk Ge. The electrode behavior, together
with the large surface-to-volume ratio, make nanoporous Ge an efficient nanostructured
template for the realization of other porous materials by electrodeposition. The pores were
efficiently decorated by Au nanoparticles of diameter as low as 1–5 nm, prepared by
electrochemical deposition. These new results demonstrate the potential and efficient use of
nanoporous Ge as a nanostructured template for nano-sized Au aggregates, opening the way
for the realization of innovative sensor devices.openG.Impellizzeri; L.Romano; B.Fraboni; E. Scavetta; F.Ruffino; C.Bongiorno; V. Privitera; M.G.GrimaldiG.Impellizzeri; L.Romano; B.Fraboni; E. Scavetta; F.Ruffino; C.Bongiorno; V. Privitera; M.G.Grimald
Suitability of different titanium dioxide nanotube morphologies for photocatalytic water treatment
Photocatalysis has long been touted as one of the most promising technologies for environmental remediation. The ability of photocatalysts to degrade a host of different pollutants, especially recalcitrant molecules, is certainly appealing. Titanium dioxide (TiO2) has been used extensively for this purpose. Anodic oxidation allows for the synthesis of a highly ordered nanotubular structure with a high degree of tunability. In this study, a series of TiO2 arrays were synthesised using different electrolytes and different potentials. Mixed anatase-rutile photocatalysts with excellent wettability were achieved with all the experimental iterations. Under UVA light, all the materials showed significant photoactivity towards different organic pollutants. The nanotubes synthesised in the ethylene glycol-based electrolyte exhibited the best performance, with near complete degradation of all the pollutants. The antibacterial activity of this same material was similarly high, with extremely low bacterial survival rates. Increasing the voltage resulted in wider and longer nanotubes, characteristics which increase the level of photocatalytic activity. The ease of synthesis coupled with the excellent activity makes this a viable material that can be used in flat-plate reactors and that is suitable for photocatalytic water treatment.peer-reviewe
Ion Implantation Defects and Shallow Junctions in Si and Ge
Defects produced by ion implantation in Si and Ge, their evolution upon post-implantation annealing, and their role in shallow junction formation processes in Si and Ge are reviewed in this chapter. After summarizing the main mechanisms underlying the defect generation and accumulation during the ion implantation processes, the damage evolution during post-implantation annealing will be treated, with emphasis on agglomerates of intrinsic defects in Si. Afterward, anomalous dopant diffusion and electrical activation phenomena occurring in Si and Ge after post-implantation annealing will be treated, with a particular focus on point defect engineering strategies for shallow junction optimization
Synthesis and Photochemical Properties of Monolithic TiO2 Nanowires Diode
In this paper, the structural and photochemical properties of a monolithic photochemical diode are discussed. The present structure is composed, from the top to the bottom, of a TiO2 nanowire layer, a TiO2 film, a Ti foil, and a porous layer made of Pt nanoparticles. The synthesis of the nanowires was simply carried out by Au-catalysed-assisted process; the effects of the annealing temperature and time were deeply investigated. Morphological and structural characterizations were performed by scanning electron microscopy and Raman spectroscopy. The analyses showed the rutile structure of the TiO2 nanowires. The photocatalytic properties were studied through the degradation of methylene blue (MB) dye under UV light irradiation. The nanowires induced an enhancement of the photo-degradation rate, compared to TiO2 in a bulk form, due to an increase in the surface area. Moreover, the presence of a nano-porous Pt layer deposited on the rear side of the samples provided a further increase in the MB degradation rate, related to the scavenging effect of Pt nanoparticles. The overall increment of the photo-activity, due to the nano-structuration of the TiO2 and to the presence of the Pt layer, resulted a factor 7, compared to the bulk reference. In addition, photovoltage measurements allowed to assess the effects of TiO2 nano-structuration and Pt nanoparticles on the electron accumulation