97 research outputs found

    LaSrVMoO6_6: A case study for AA-site covalency-driven local cationic order in double perovskites

    Full text link
    An unusual atomic scale chemical fluctuation in LaSrVMoO6_6, in terms of narrow patches of La,V and Sr,Mo-rich phases, has been probed in detail to understand the origin of such a chemical state. Exhaustive tuning of the equilibrium synthesis parameters showed that the extent of phase separation can never be melted down below an unit cell dimension making it impossible to achieve the conventional BB-site ordered structure, which establishes that the observed `inhomogeneous' patch-like structure with minimum dimension of few angstroms is a reality in LaSrVMoO6_6. Therefore, another type of local chemical order, hitherto unknown in double perovskites, gets introduced here. X-ray diffraction, electron microscopy elemental mapping, magnetic, and various spectroscopic studies have been carried out on samples, synthesized under different conditions. These experimental results in conjunction with {\it ab-initio} electronic structure calculation revealed that it is the energy stability, gained by typical La-O covalency as in LaVO3_3, that leads to the preferential La,V and Sr,Mo ionic proximity, and the consequent patchy structure.Comment: 21 pages, 7 figure

    Structural and electronic studies of metal hexacyanoferrates based cathodes for Li rechargeable batteries

    Get PDF
    Operando XANES and EXAFS spectra on the newly prepared Fe hexacyanocobaltate active material for positive electrodes in lithium batteries have been recorded at the XAFS beamline of Elettra using a suitable in situ cell. In this way, it was possible to follow in detail the main structural and electronic changes during the charge and discharge processes of the battery. The use of a chemometric approach for data analysis is also underlined

    Synthesis and characterization of molecular electrode materials for lithium-ion batteries

    Get PDF
    Rechargeable Li-ion batteries (LIBs) are nowadays gaining more and more importance in the storage of clean energy deriving from renewable sources as well as in portable devices applications. Thus, new electrode materials are being studied by several research group in order to constantly improve performances of LIBs. In this context, the aim of this thesis work was to synthesize, characterize and test cycling properties of two new cathodic materials: iron nitroprusside and its degradation product, called Fe(CN)O. Cubic iron nitroprusside as well as Fe(CN)O were successfully co-precipitated and thence investigated by means of different techniques such as Mössbauer spectroscopy, CHN elemental analysis, ATR-FTIR and X-rays techniques (XRD, WDX and SEM-EDX). Good cycling properties were registered for both the materials in LIBs and post-lithium systems such as Na and K-ion batteries. In situ analysis confirmed the hypothesis of a reversible reaction between materials and lithium ions occurring in the potential range of 1.7 - 4.2 V vs.Li + /Li

    Synthesis and Characterization of Prussian Blue Analogue Materials for Li-ion and post-Li Batteries

    Get PDF
    The global challenge responding to the need of efficient electrical energy storage is answered by rechargeable batteries, which are based on high-rate intercalation reaction of lithium ions into nano- and microstructured porous materials. A class of insetion-type materials is represented by Prussian blue analogues (PBAs), characterized by porous open 3D-frameworks which allow for a facile insertion/ extraction of ions with negligible lattice strain. In the present work we focused on the synthesis and characterization of PBAs in Li-ion and post-Li battery systems, their redox activity, electronic and structural reversibility while cycling. All synthesized materials exhibit good structural stability and negligible lattice strain during (de)insertion of ions and redox processes ascribable to one or more redox species. For instance, copper hexacyanoferrate features two redox sites, copper and iron, contrarily to what reported in the literature, while copper nitroprusside has been demonstrated to possess three redox centres, including the two metals, as well as the non innocent nitrosyl ligand as third site. Electrosynthesized copper hexacyanoferrate results extremely versatile towards a wide selection of ions in aqueous solution, ranging from monovalent to multivalent ions, while titanium hexacyanoferrate may reach a capacity equal to 55 mAh/g in potassium nitrate aqueous solution. This led to the conclusion that a H2O-based system would be feasible for the studied materials, and more in general for this class of compounds. Although they do not feature high specific capacities, they are characterized by good cycling ability and efficiency, as well as ion-versatility which can be favorable to a post-lithium strategy. The investigation of their reaction mechanism has led to the deep understanding of limiting steps, whereby it is possible to tailor new promising materials that could result competitive in the next future

    Severity of Hepatocyte Damage and Prognosis in Cirrhotic Patients Correlate with Hepatocyte Magnesium Depletion

    Get PDF
    We aimed to evaluate the magnesium content in human cirrhotic liver and its correlation with serum AST levels, expression of hepatocellular injury, and MELDNa prognostic score. In liver biopsies obtained at liver transplantation, we measured the magnesium content in liver tissue in 27 cirrhotic patients (CIRs) and 16 deceased donors with healthy liver (CTRLs) by atomic absorption spectrometry and within hepatocytes of 15 CIRs using synchrotron-based X-ray fluorescence microscopy. In 31 CIRs and 10 CTRLs, we evaluated the immunohistochemical expression in hepatocytes of the transient receptor potential melastatin 7 (TRPM7), a magnesium influx chanzyme also involved in inflammation. CIRs showed a lower hepatic magnesium content (117.2 (IQR 110.5–132.9) vs. 162.8 (IQR 155.9–169.8)  g/g; p < 0.001) and a higher percentage of TRPM7 positive hepatocytes (53.0 (IQR 36.8–62.0) vs. 20.7 (10.7–32.8)%; p < 0.001) than CTRLs. In CIRs, MELDNa and serum AST at transplant correlated: (a) inversely with the magnesium content both in liver tissue and hepatocytes; and (b) directly with the percentage of hepatocytes stained intensely for TRPM7. The latter also directly correlated with the worsening of MELDNa at transplant compared to waitlisting. Magnesium depletion and overexpression of its influx chanzyme TRPM7 in hepatocytes are associated with severity of hepatocyte injury and prognosis in cirrhosis. These data represent the pathophysiological basis for a possible beneficial effect of magnesium supplementation in cirrhotic patients

    Severity of Hepatocyte Damage and Prognosis in Cirrhotic Patients Correlate with Hepatocyte Magnesium Depletion

    Get PDF
    We aimed to evaluate the magnesium content in human cirrhotic liver and its correlation with serum AST levels, expression of hepatocellular injury, and MELDNa prognostic score. In liver biopsies obtained at liver transplantation, we measured the magnesium content in liver tissue in 27 cirrhotic patients (CIRs) and 16 deceased donors with healthy liver (CTRLs) by atomic absorption spectrometry and within hepatocytes of 15 CIRs using synchrotron-based X-ray fluorescence microscopy. In 31 CIRs and 10 CTRLs, we evaluated the immunohistochemical expression in hepatocytes of the transient receptor potential melastatin 7 (TRPM7), a magnesium influx chanzyme also involved in inflammation. CIRs showed a lower hepatic magnesium content (117.2 (IQR 110.5-132.9) vs. 162.8 (IQR 155.9-169.8) mu g/g; p < 0.001) and a higher percentage of TRPM7 positive hepatocytes (53.0 (IQR 36.8-62.0) vs. 20.7 (10.7-32.8)%; p < 0.001) than CTRLs. In CIRs, MELDNa and serum AST at transplant correlated: (a) inversely with the magnesium content both in liver tissue and hepatocytes; and (b) directly with the percentage of hepatocytes stained intensely for TRPM7. The latter also directly correlated with the worsening of MELDNa at transplant compared to waitlisting. Magnesium depletion and overexpression of its influx chanzyme TRPM7 in hepatocytes are associated with severity of hepatocyte injury and prognosis in cirrhosis. These data represent the pathophysiological basis for a possible beneficial effect of magnesium supplementation in cirrhotic patients

    Chemical induced delithiation on LixMnPO4: an investigation about the phase structure

    Get PDF
    Understanding the LiMnPO4/MnPO4 phase transition is of great interest in order to further improve the electrochemical performance of this cathode material. Since most of the previously published literature deals with characterization of chemically delithiated Lix MnPO4, the aim of this study is to compare and study the composition and structure of the different phases that are generated upon chemical delithiation of LixMnPO4. Bare and carboncoated lithium manganese phos-phates are prepared via a combined coprecipitation-calcination method. Partial delithiation to two different degrees of delithiation Lix MnPO4 (x = 0.24/0.23 and 0.45) for carbon-coated and/or bare materials is achieved using an excess of nitro-nium tetrafluoroborate in acetonitrile. The effect of carboncoating has been also considered. Standard materials characterization with XRD (X-Ray Diffraction) and ICPOES (Inductive Coupled Plasma spectrometry and Optical Emission Spectroscopy) analysis are in accordance with literature data, but further cerimetric analysis revealed serious deviations, showing differences in the degree of delithiation to the average degree of oxidation. A structural characterization of the atomic and electronic local structure of the materials is also ob-tained using XAS (X-ray Absorption Spectroscopy) technique

    Highlighting the Reversible Manganese Electroactivity in Na‐Rich Manganese Hexacyanoferrate Material for Li‐ and Na‐Ion Storage

    Get PDF
    The electroactivity of sodium‐rich manganese hexacyanoferrate (MnHCF) material constituted of only abundant elements, as insertion host for Li‐ and Na‐ions is herein comprehensively discussed. This material features high specific capacities (>130 mAh g−1) at high potentials when compared to other materials of the same class, i.e., Prussian blue analogs. The reversible electronic and structural modifications occurring during ion release/uptake, which are responsible for such high specific capacity, are revealed herein. The in‐depth electronic and structural analysis carried out combining X‐ray diffraction and X‐ray absorption spectroscopy (XAS), demonstrates that both Fe and Mn sites are involved in the electrochemical process, being the high delivered capacity the result of a reversible evolution in oxidation states of the metallic centers (Fe3+/Fe2+ and Mn2+/Mn3+). Along with the Mn2+/Mn3+ oxidation, the Mn local environment experiences a substantial yet reversible Jahn–Teller effect, being the equatorial Mn‐N distances shrunk by 10% (2.18 Å → 1.96 Å). Na‐rich MnHCF material offers slightly higher performance upon uptake and release of Na‐ions (469 Wh kg−1) than Li‐ions (457 Wh kg−1), being, however, the electronic and structural transformation independent of the adopted medium, as observed by XAS spectroscopy
    corecore