9 research outputs found

    Biorelevant release testing of biodegradable microspheres intended for intra-articular administration

    Get PDF
    Characterization of controlled release formulations used for intra-articular (IA) drug administration is challenging. Bio-relevant synovial fluids (BSF), containing physiologically relevant amounts of hyaluronic acid, phospholipids and proteins, were recently proposed to simulate healthy and osteoarthritic conditions. This work aims to evaluate the performance of different controlled release formulations of methylprednisolone (MP) for IA administration, under healthy and disease states simulated conditions. Microspheres differed in grade of poly(lactide-co-glycolide) and in the theoretical drug content (i.e. 23 or 30% w/w). Their performance was compared with the commercially available suspension of MP acetate (MPA). Under osteoarthritic state simulated condition, proteins increased the MPA release and reduced the MPA hydrolysis rate, over 48\u202fh. Regarding microspheres, the release patterns over 40 days were significantly influenced by the composition of BSF. The pattern of the release mechanism and the amount released was affected by the presence of proteins. Protein concentration affected the release and the concentration used is critical, particularly given the relevance of the concentrations to target patient populations, i.e. patients with osteoarthritis

    Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale

    Get PDF
    The reproduction of reliable in vitro models of human skeletal muscle is made harder by the intrinsic 3D structural complexity of this tissue. Here we coupled engineered hydrogel with 3D structural cues and specific mechanical properties to derive human 3D muscle constructs ("myobundles") at the scale of single fibers, by using primary myoblasts or myoblasts derived from embryonic stem cells. To this aim, cell culture was performed in confined, laminin-coated micrometric channels obtained inside a 3D hydrogel characterized by the optimal stiffness for skeletal muscle myogenesis. Primary myoblasts cultured in our 3D culture system were able to undergo myotube differentiation and maturation, as demonstrated by the proper expression and localization of key components of the sarcomere and sarcolemma. Such approach allowed the generation of human myobundles of ~10 mm in length and ~120 \u3bcm in diameter, showing spontaneous contraction 7 days after cell seeding. Transcriptome analyses showed higher similarity between 3D myobundles and skeletal signature, compared to that found between 2D myotubes and skeletal muscle, mainly resulting from expression in 3D myobundles of categories of genes involved in skeletal muscle maturation, including extracellular matrix organization. Moreover, imaging analyses confirmed that structured 3D culture system was conducive to differentiation/maturation also when using myoblasts derived from embryonic stem cells. In conclusion, our structured 3D model is a promising tool for modelling human skeletal muscle in healthy and diseases conditions

    List of Figures / List of Tables / Acknowledgement

    Get PDF
    In the context of Turkey’s accession to the EU, the issue of potential migration from Turkey and its impact upon European labor markets became one of the concerns of the EU, considering Turkey’s growing population and young labor force. In 2011, half a century after the bi-lateral agreement between Turkey and Germany on labor recruitment in 1961, migration plays a key role in relations of Turkey with the EU and will even increase its significance – not necessarily for the next fifty years but certainly for the next decade. This book touches upon various aspects of the ongoing debate about the effects of Turkey’s accession to the EU upon the migration flows and sheds light on various dimensions of current panorama, addresses policy implications as well as future challenges and opportunities.In the context of Turkey’s accession to the EU, the issue of potential migration from Turkey and its impact upon European labor markets became one of the concerns of the EU, considering Turkey’s growing population and young labor force. In 2011, half a century after the bi-lateral agreement between Turkey and Germany on labor recruitment in 1961, migration plays a key role in relations of Turkey with the EU and will even increase its significance – not necessarily for the next fifty years but certainly for the next decade. This book touches upon various aspects of the ongoing debate about the effects of Turkey’s accession to the EU upon the migration flows and sheds light on various dimensions of current panorama, addresses policy implications as well as future challenges and opportunities

    Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures

    Get PDF
    Three-dimensional hydrogel-based organ-like cultures can be applied to study development, regeneration, and disease in vitro. However, the control of engineered hydrogel composition, mechanical properties and geometrical constraints tends to be restricted to the initial time of fabrication. Modulation of hydrogel characteristics over time and according to culture evolution is often not possible. Here, we overcome these limitations by developing a hydrogel-in-hydrogel live bioprinting approach that enables the dynamic fabrication of instructive hydrogel elements within pre-existing hydrogel-based organ-like cultures. This can be achieved by crosslinking photosensitive hydrogels via two-photon absorption at any time during culture. We show that instructive hydrogels guide neural axon directionality in growing organotypic spinal cords, and that hydrogel geometry and mechanical properties control differential cell migration in developing cancer organoids. Finally, we show that hydrogel constraints promote cell polarity in liver organoids, guide small intestinal organoid morphogenesis and control lung tip bifurcation according to the hydrogel composition and shape

    Advanced x-ray imaging techniques in tissue engineering: a new construct assessment platform for enabling the regeneration of personalised organs

    Get PDF
    Tissue engineering (TE) holds promise for generating lab-grown patient specific organs which can provide: (1) effective treatment for conditions that require volumetric tissue transplantation and (2) new platforms for drug testing. Even though volumetric structural information is essential for confirming successful organ maturation, TE protocol designs are currently informed through destructive and 2D construct assessment tools (e.g. histology). X-ray phase-contrast computed-tomography (PC-CT) can generate non-destructive, high resolution, 3D density maps of organ architecture. In this work, PC-CT is used as new imaging tool for guiding two TE protocols currently at the in-vitro testing stage. The first (1) involves cell-repopulation of an oesophageal scaffold, with the aim of using the regenerated construct for treating long-gap oesophageal atresia, whilst for the second (2) a lung-derived scaffold is populated with islets for regenerating a pancreas, with the “repurposed” lung offering a platform for diabetes drug testing. By combing 3D images and quantitative information, we were able to perform comprehensive construct evaluation. Specifically, we assessed volumetrically: (1) the cell-distribution within the regenerated oesophagi and (2) islet integration with the vascular tree of the lung-derived scaffold. This new information was proven to be essential for establishing corresponding TE protocols and enabled their progression to more advanced scale-up models. We are confident that PC-CT will provide the novel insights necessary to further progress TE protocols, with the next step being in-vivo testing. Crucially, the non-destructive nature of PC-CT will allow in-vivo assessments of TE constructs following their implantation into animal hosts, to investigate their successful integration

    Data on spray-drying processing to optimize the yield of materials sensitive to heat and moisture content

    No full text
    Full dataset used to evaluate the spray-drying process parameters on the preparation of a micronized powder made of maltodextrin (MDX) is herein reported. The process parameters (namely, feed flow rate (FFR); inlet temperature (Tin); nozzle pressure (PN); noozle diameter (DN) and difference of pressure between cyclone and chamber (ΔP)) were screened through a Central Composite Design (25−1; 2∗5; nC=2) using the following responses: product yield, powder size and size dispersity (span) and the outlet temperature of the exhausted air (Tout). Data indicate that, in the considered range, only the product yield and the powder median diameter were influenced by the process. The product yield progressively increased on increasing inlet temperature and decreasing the amount or the size of droplets to be dried. The powder median diameter was positively influenced only by the nozzle diameter. This data presented in this article completes a wider work related on “Maltodextrins as drying auxiliary agent for the preparation of easily resuspendable nanoparticles” (Magri et al., 2019). Keywords: Spray-drying, Maltodextrins, Process optimizatio

    Development of poly(lactide-co-glycolide) nanoparticles functionalized with a mitochondria penetrating peptide

    Get PDF
    The development of mitochondria-targeting cell permeable vectors represents a promising therapeutic approach for several diseases, such as cancer and oxidative pathologies. Nevertheless, access to mitochondria can be difficult. A new hybrid material composed by poly(lactide-co-glycolide) (PLGA) functionalized with a 6-mer mitochondria penetrating peptide (MPP), consisting in alternating arginine and unnatural cyclohexylalanine, was developed. Circular dichroism, FT-IR and DSC studies indicated that the conjugation of the peptide with the polymer led to the obtainment of a more rigid material with respect to both PLGA and MPP as such. In particular, a conformational rearrangement to a helical structure was observed for MPP. MPP\u2013PLGA conjugates were used for the preparation of nanoparticles that showed no cytotoxicity in MTT assay, suggesting their putative use for future studies on mitochondria targeting

    Four-dimensional hydrogel-in-hydrogel bioprinting for the spatiotemporal control of organoid and organotypic cultures

    Get PDF
    Tissue architecture is a driving force for morphogenetic processes during development as well as for several physiological and regenerative responses. Far from being a passive static environment, tissue architecture is highly dynamic. Hydrogel technology reproduces in vitro geometrical and mechanical constrains that control the three-dimensional self-organization of (3D) organoids and organ-like cultures. This control is restricted to the initial culture conditions and cannot be adapted to the dynamic morphological changes of complex 3D cultures during their developmental trajectory. Here, we developed a method that overcomes this spatiotemporal limit. Using 2P crosslinking approach, high resolution 3D hydrogel structures can be fabricated within pre-existing hydrogel with spatiotemporal (fourdimensional, 4D) control relative to ex-vivo organotypic or organoid culture. This hydrogel-in- hydrogel bioprinting approach enables to continuously instruct the self-organization of the evolving 3D organ-like cultures

    Hydrogel-in-hydrogel live bioprinting for guidance and control of organoids and organotypic cultures

    No full text
    Abstract Three-dimensional hydrogel-based organ-like cultures can be applied to study development, regeneration, and disease in vitro. However, the control of engineered hydrogel composition, mechanical properties and geometrical constraints tends to be restricted to the initial time of fabrication. Modulation of hydrogel characteristics over time and according to culture evolution is often not possible. Here, we overcome these limitations by developing a hydrogel-in-hydrogel live bioprinting approach that enables the dynamic fabrication of instructive hydrogel elements within pre-existing hydrogel-based organ-like cultures. This can be achieved by crosslinking photosensitive hydrogels via two-photon absorption at any time during culture. We show that instructive hydrogels guide neural axon directionality in growing organotypic spinal cords, and that hydrogel geometry and mechanical properties control differential cell migration in developing cancer organoids. Finally, we show that hydrogel constraints promote cell polarity in liver organoids, guide small intestinal organoid morphogenesis and control lung tip bifurcation according to the hydrogel composition and shape
    corecore