223 research outputs found

    Fowlpox virus recombinants expressing HPV-16 E6 and E7 oncogenes for the therapy of cervical carcinoma elicit humoral and cell-mediated responses in rabbits

    Get PDF
    Background: Around half million new cases of cervical cancer arise each year, making the development of an effective therapeutic vaccine against HPV a high priority. As the E6 and E7 oncoproteins are expressed in all HPV-16 tumour cells, vaccines expressing these proteins might clear an already established tumour and support the treatment of HPV-related precancerous lesions. Methods: Three different immunisation regimens were tested in a pre-clinical trial in rabbits to evaluate the humoral and cell-mediated responses of a putative HPV-16 vaccine. Fowlpoxvirus (FP) recombinants separately expressing the HPV-16 E6 (FPE6) and E7 (FPE7) transgenes were used for priming, followed by E7 protein boosting. Results: All of the protocols were effective in eliciting a high antibody response. This was also confirmed by interleukin-4 production, which increased after simultaneous priming with both FPE6 and FPE7 and after E7 protein boost. A cell-mediated immune response was also detected in most of the animals. Conclusion: These results establish a preliminary profile for the therapy with the combined use of avipox recombinants, which may represent safer immunogens than vaccinia-based vectors in immuno-compromised individuals, as they express the transgenes in most mammalian cells in the absence of a productive replication

    Localisation of Human Papillomavirus 16 E7 Oncoprotein Changes with Cell Confluence

    Get PDF
    E7 is one of the best studied proteins of human papillomavirus type 16, largely because of its oncogenic potential linked to cervical cancer. Yet the sub-cellular location of E7 remains confounding, even though it has been shown to be able to shuttle between the nucleus and the cytoplasm. Here we show with immunocytochemistry that E7 proteins are located in the nucleus and cytoplasm in sub-confluent cells, but becomes cytoplasmic in confluent cells. The change in E7's location is independent of time in culture, cell division, cell cycle phase or cellular differentiation. Levels of E7 are also increased in confluent cells as determined by Western blotting. Our investigations have also uncovered how different analytical techniques influence the observation of where E7 is localised, highlighting the importance of technical choice in such analysis. Understanding the localisation of E7 will help us to better comprehend the function of E7 on its target proteins

    High sustained efficacy of a prophylactic quadrivalent human papillomavirus types 6/11/16/18 L1 virus-like particle vaccine through 5 years of follow-up

    Get PDF
    Human papillomavirus (HPV) causes cervical, vulvar, and vaginal cancers, precancerous dysplasia, and genital warts. We report data for the longest efficacy evaluation to date of a prophylactic HPV vaccine. In total, 552 women (16–23 years) were enrolled in a randomised, placebo-controlled study of a quadrivalent HPV 6/11/16/18 L1 virus-like-particle vaccine with vaccination at months 0, 2, and 6. At regular intervals through 3 years, subjects underwent gynaecologic examination, cervicovaginal sampling for HPV DNA, serum anti-HPV testing, and Pap testing, with follow-up biopsy as indicated. A subset of 241 subjects underwent two further years of follow-up. At 5 years post enrolment, the combined incidence of HPV 6/11/16/18-related persistent infection or disease was reduced in vaccine-recipients by 96% (two cases vaccine versus 46 placebo). There were no cases of HPV 6/11/16/18-related precancerous cervical dysplasia or genital warts in vaccine recipients, and six cases in placebo recipients (efficacy=100%; 95% CI:12–100%). Through 5 years, vaccine-induced anti-HPV geometric mean titres remained at or above those following natural infection. In conclusion, a prophylactic quadrivalent HPV vaccine was effective through 5 years for prevention of persistent infection and disease caused by HPV 6/11/16/18. This duration supports vaccination of adolescents and young adults, which is expected to greatly reduce the burden of cervical and genital cancers, precancerous dysplasia, and genital warts

    Papillomavirus Capsid Binding and Uptake by Cells From Different Tissues and Species

    Get PDF
    The inability of papillomaviruses (PV) to replicate in tissue culture cells has hampered the study of the PV life cycle. We investigated virus-cell interactions by the following two methods: (i) using purified bovine PV virions or human PV type 11 (HPV type 11) virus-like particles (VLP) to test the binding to eukaryotic cells and (ii) using different VLP-reporter plasmid complexes of HPV6b, HPV11 L1 or HPV11 L1/L2, and HPV16 L1 or HPV16 L1/L2 to study uptake of particles into different cell lines. Our studies showed that PV capsids bind to a broad range of cells in culture in a dose-dependent manner. Binding of PV capsids to cells can be blocked by pretreating the cells with the protease trypsin. Penetration of PV into cells was monitored by using complexes in which the purified PV capsids were physically linked to DNA containing the gene for beta-galactosidase driven by the human cytomegalovirus promoter. Expression of beta-galactosidase occurred in < 1% of the cells, and the efficiency of PV receptor-mediated gene delivery was greatly enhanced (up to 10 to 20% positive cells) by the use of a replication-defective adenovirus which promotes endosomal lysis. The data generated by this approach further confirmed the results obtained from the binding assays, showing that PV enter a wide range of cells and that these cells have all functions required for the uptake of PV. Binding and uptake of PV particles can be blocked by PV-specific antisera, and different PV particles compete for particle uptake. Our results suggest that the PV receptor is a conserved cell surface molecule(s) used by different PV and that the tropism of infection by different PV is controlled by events downstream of the initial binding and uptake

    CRPV Genomes with Synonymous Codon Optimizations in the CRPV E7 Gene Show Phenotypic Differences in Growth and Altered Immunity upon E7 Vaccination

    Get PDF
    Papillomaviruses use rare codons relative to their hosts. Recent studies have demonstrated that synonymous codon changes in viral genes can lead to increased protein production when the codons are matched to those of cells in which the protein is being expressed. We theorized that the immunogenicity of the virus would be enhanced by matching codons of selected viral genes to those of the host. We report here that synonymous codon changes in the E7 oncogene are tolerated in the context of the cottontail rabbit papillomavirus (CRPV) genome. Papilloma growth rates differ depending upon the changes made indicating that synonymous codons are not necessarily neutral. Immunization with wild type E7 DNA yielded significant protection from subsequent challenge by both wild type and codon-modified genomes. The reduction in growth was most dramatic with the genome containing the greatest number of synonymous codon changes

    Age of Child, More than HPV Type, Is Associated with Clinical Course in Recurrent Respiratory Papillomatosis

    Get PDF
    Background: RRP is a devastating disease in which papillomas in the airway cause hoarseness and breathing difficulty. The disease is caused by human papillomavirus (HPV), 6 or 11 and is very variable. Patients undergo multiple surgeries to maintain a patent airway and in order to communicate vocally. Several small studies have been published in which most have noted that HPV 11 is associated with a more aggressive course. Methodology/Principal Findings: Papilloma biopsies were taken from patients undergoing surgical treatment of RRP and were subjected to HPV typing. 118 patients with juvenile-onset RRP with a least 1 year of clinical data and infected with a single HPV type were analyzed. HPV 11 was encountered in 40% of the patients. By our definition, most of the patients in the sample (81%) had run an aggressive course. The odds of a patient with HPV 11 running an aggressive course were 3.9 times higher that that of patients with HPV 6 (Fisher's exact p=0.017). However, clinical course was more closely associated with age of the patient (at diagnosis and at the time of the current surgery) than with HPV type. Patients with HPV 11 were diagnosed at a younger age (2.4y) than were those with HPV 6 (3.4y) (p=0.014). Both by multiple linear regression and by multiple logistics regression HPV type was only weakly associated with metrics of disease course when simultaneously accounting for age. Conclusions/Significance Abstract: The course of RRP is variable and a quarter of the variability can be accounted for by the age of the patient. HPV 11 is more closely associated with a younger age at diagnosis than it is associated with an aggressive clinical course. These data suggest that there are factors other than HPV type and age of the patient that determine disease course. © 2008 Buchinsky et al

    Presence of papillomavirus sequences in condylomatous lesions of the mamillae and in invasive carcinoma of the breast

    Get PDF
    BACKGROUND: Viruses including Epstein–Barr virus (EBV), a human equivalent of murine mammary tumour virus (MMTV) and human papillomavirus (HPV) have been implicated in the aetiology of human breast cancer. We report the presence of HPV DNA sequences in areolar tissue and tumour tissue samples from female patients with breast carcinoma. The presence of virus in the areolar–nipple complex suggests to us a potential pathogenic mechanism. METHODS: Polymerase chain reaction (PCR) was undertaken to amplify HPV types in areolar and tumour tissue from breast cancer cases. In situ hybridisation supported the PCR findings and localised the virus in nipple, areolar and tumour tissue. RESULTS: Papillomavirus DNA was present in 25 of 29 samples of breast carcinoma and in 20 of 29 samples from the corresponding mamilla. The most prevalent type in both carcinomas and nipples was HPV 11, followed by HPV 6. Other types detected were HPV 16, 23, 27 and 57 (nipples and carcinomas), HPV 20, 21, 32, 37, 38, 66 and GA3-1 (nipples only) and HPV 3, 15, 24, 87 and DL473 (carcinomas only). Multiple types were demonstrated in seven carcinomas and ten nipple samples. CONCLUSIONS: The data demonstrate the occurrence of HPV in nipple and areolar tissues in patients with breast carcinoma. The authors postulate a retrograde ductular pattern of viral spread that may have pathogenic significance

    Antigen-expressing immunostimulatory liposomes as a genetically programmable synthetic vaccine

    Get PDF
    Liposomes are versatile (sub)micron-sized membrane vesicles that can be used for a variety of applications, including drug delivery and in vivo imaging but they also represent excellent models for artificial membranes or cells. Several studies have demonstrated that in vitro transcription and translation can take place inside liposomes to obtain compartmentalized production of functional proteins within the liposomes (Kita et al. in Chembiochem 9(15):2403–2410, 2008; Moritani et al.in FEBS J, 2010; Kuruma et al. in Methods Mol Biol 607:161–171, 2010; Murtas et al. in Biochem Biophys Res Commun 363(1):12–17, 2007; Sunami et al. in Anal Biochem 357(1):128–136, 2006; Ishikawa et al. in FEBS Lett 576(3):387–390, 2004; Oberholzer et al. in Biochem Biophys Res Commun 261(2):238–241, 1999). Such a minimal artificial cell-based model is ideal for synthetic biology based applications. In this study, we propose the use of liposomes as artificial microbes for vaccination. These artificial microbes can be genetically programmed to produce specific antigens at will. To show proof-of-concept for this artificial cell-based platform, a bacterial in vitro transcription and translation system together with a gene construct encoding the model antigen β-galactosidase were entrapped inside multilamellar liposomes. Vaccination studies in mice showed that such antigen-expressing immunostimulatory liposomes (AnExILs) elicited higher specific humoral immune responses against the produced antigen (β-galactosidase) than control vaccines (i.e. AnExILs without genetic input, liposomal β-galactosidase or pDNA encoding β-galactosidase). In conclusion, AnExILs present a new platform for DNA-based vaccines which combines antigen production, adjuvanticity and delivery in one system and which offer several advantages over existing vaccine formulations

    Synthetic Double-Stranded RNAs Are Adjuvants for the Induction of T Helper 1 and Humoral Immune Responses to Human Papillomavirus in Rhesus Macaques

    Get PDF
    Toll-like receptor (TLR) ligands are being considered as adjuvants for the induction of antigen-specific immune responses, as in the design of vaccines. Polyriboinosinic-polyribocytoidylic acid (poly I:C), a synthetic double-stranded RNA (dsRNA), is recognized by TLR3 and other intracellular receptors. Poly ICLC is a poly I:C analogue, which has been stabilized against the serum nucleases that are present in the plasma of primates. Poly I:C12U, another analogue, is less toxic but also less stable in vivo than poly I:C, and TLR3 is essential for its recognition. To study the effects of these compounds on the induction of protein-specific immune responses in an animal model relevant to humans, rhesus macaques were immunized subcutaneously (s.c.) with keyhole limpet hemocyanin (KLH) or human papillomavirus (HPV)16 capsomeres with or without dsRNA or a control adjuvant, the TLR9 ligand CpG-C. All dsRNA compounds served as adjuvants for KLH-specific cellular immune responses, with the highest proliferative responses being observed with 2 mg/animal poly ICLC (p = 0.002) or 6 mg/animal poly I:C12U (p = 0.001) when compared with immunization with KLH alone. Notably, poly ICLC—but not CpG-C given at the same dose—also helped to induce HPV16-specific Th1 immune responses while both adjuvants supported the induction of strong anti-HPV16 L1 antibody responses as determined by ELISA and neutralization assay. In contrast, control animals injected with HPV16 capsomeres alone did not develop substantial HPV16-specific immune responses. Injection of dsRNA led to increased numbers of cells producing the T cell–activating chemokines CXCL9 and CXCL10 as detected by in situ hybridization in draining lymph nodes 18 hours after injections, and to increased serum levels of CXCL10 (p = 0.01). This was paralleled by the reduced production of the homeostatic T cell–attracting chemokine CCL21. Thus, synthetic dsRNAs induce an innate chemokine response and act as adjuvants for virus-specific Th1 and humoral immune responses in nonhuman primates
    corecore