15 research outputs found

    Convolutional Methods for Music Analysis

    Get PDF

    A Wavelet-Based Approach to Pattern Discovery in Melodies

    Get PDF

    Wavelet-filtering of symbolic music representations for folk tune segmentation and classification

    Get PDF
    The aim of this study is to evaluate a machine-learning method in which symbolic representations of folk songs are segmented and classified into tune families with Haar-wavelet filtering. The method is compared with previously proposed Gestaltbased method. Melodies are represented as discrete symbolic pitch-time signals. We apply the continuous wavelet transform (CWT) with the Haar wavelet at specific scales, obtaining filtered versions of melodies emphasizing their information at particular time-scales. We use the filtered signal for representation and segmentation, using the wavelet coefficients ’ local maxima to indicate local boundaries and classify segments by means of k-nearest neighbours based on standard vector-metrics (Euclidean, cityblock), and compare the results to a Gestalt-based segmentation method and metrics applied directly to the pitch signal. We found that the wavelet based segmentation and waveletfiltering of the pitch signal lead to better classification accuracy in cross-validated evaluation when the time-scale and other parameters are optimized. 1

    Composer Recognition based on 2D-Filtered Piano-Rolls

    Get PDF
    [TODO] Add abstract here

    Evaluating XGBoost for Balanced and Imbalanced Data: Application to Fraud Detection

    Full text link
    This paper evaluates XGboost's performance given different dataset sizes and class distributions, from perfectly balanced to highly imbalanced. XGBoost has been selected for evaluation, as it stands out in several benchmarks due to its detection performance and speed. After introducing the problem of fraud detection, the paper reviews evaluation metrics for detection systems or binary classifiers, and illustrates with examples how different metrics work for balanced and imbalanced datasets. Then, it examines the principles of XGBoost. It proposes a pipeline for data preparation and compares a Vanilla XGBoost against a random search-tuned XGBoost. Random search fine-tuning provides consistent improvement for large datasets of 100 thousand samples, not so for medium and small datasets of 10 and 1 thousand samples, respectively. Besides, as expected, XGBoost recognition performance improves as more data is available, and deteriorates detection performance as the datasets become more imbalanced. Tests on distributions with 50, 45, 25, and 5 percent positive samples show that the largest drop in detection performance occurs for the distribution with only 5 percent positive samples. Sampling to balance the training set does not provide consistent improvement. Therefore, future work will include a systematic study of different techniques to deal with data imbalance and evaluating other approaches, including graphs, autoencoders, and generative adversarial methods, to deal with the lack of labels.Comment: 17 pages, 8 figures, 9 tables, Presented at NVIDIA GTC, The Conference for the Era of AI and the Metaverse, March 23, 2023. [S51129
    corecore