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Abstract

We present a novel convolution-based method for classification of audio and symbolic repre-

sentations of music, which we apply to classification of music by style. Pieces of music are first

sampled to pitch–time representations (spectrograms or piano-rolls), and then convolved with a

Gaussian filter, before being classified by a support vector machine or by k-nearest neighbours

in an ensemble of classifiers. On the well-studied task of discriminating between string quartet

movements by Haydn and Mozart we obtain accuracies that equal the state of the art on two

datasets. However, in multi-class composer identification, methods specialized for classifying

symbolic representations of music are more effective. We also performed experiments on sym-

bolic representations, synthetic audio and two different recordings of The Well-Tempered Clavier

by J. S. Bach to study the method’s capacity to distinguish preludes from fugues. Our experi-

mental results show that our approach performs similarly on symbolic representations, synthetic

audio and audio recordings, setting our method apart from most previous studies that have been

designed for use with either audio or symbolic data, but not both.

Index terms— Classification algorithms, composer classification, genre classification, convolution,

filtering, audio music classification, symbolic music classification
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1 Introduction

Methods modelling style recognition are of interest in music information retrieval for their ap-

plicability in, e.g., music indexing, recommendation systems, and music generation, as well as in

systematic musicology where they can foster the understanding of music. From the computational

perspective taken in this study, style can be seen as a set of distinctive features shared among the

instances of a style. Perceptually, style is a phenomenon that lets us characterize artists, genres,

periods of composition, etc., on the basis of distinguishing salient features of works, despite variation

or evolution over time (Paul & Kaufman, 2014; Rush & Sabers, 1981).

Most methods for classifying musical works have been specialized for use with either symbolic

representations or digital audio files, but not both; and considerably more effort has been devoted

to classification of music audio data. Most work in the audio domain builds models of timbre and

instrumentation (Sturm, 2014b), while approaches in the symbolic domain are based on higher level

musical descriptors derived from pitch–time structure.

The motivation for developing a method that can be applied in both domains stems from the

successful use of visual representations of music in classification (Costa, Oliveira, Koerich, Gouyon,

& Martins, 2012; Lidy & Schindler, 2016; Velarde, Weyde, Cancino Chacón, Meredith, & Grachten,

2016; Wu et al., 2011) and the fact that both audio and symbolic music representations can be cast as

images on a pitch–time plane. Spectrograms resemble noisy piano-roll representations, so intuitively

one would think that a method that works well on a piano-roll representation might also work on

a spectrogram. We expect some musical features to be useful for style recognition independently

of representation (symbolic or audio), at least for music where timbral features are not required to

distinguish a style. Having a single method that works equally well on both audio and symbolic

data is interesting if one wants to index large heterogeneous multimedia music collections containing

both score encodings and recordings, see for example the International Music Score Library Project

(www.imslp.org) or the databases of IRCAM (http://ressources.ircam.fr).

Discriminating between string quartet movements by Haydn and Mozart (Sapp & Liu, 2015;

van Kranenburg & Backer, 2004) is an example of a classification task that is challenging for both

humans and computers. In this task, self-declared human experts achieve a composer recognition

accuracy of around 66%, while non-experts perform just above chance level (Sapp & Liu, 2015). The
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computational methods proposed to date for discriminating between these two composers have been

applied to symbolic representations of music, with accuracies above self-declared experts (Herlands,

Der, Greenberg, & Levin, 2014; Hillewaere, Manderick, & Conklin, 2010; Hontanilla, Pérez-Sancho,

& Iñesta, 2013; van Kranenburg & Backer, 2004; Velarde et al., 2016). Most of these methods rely

on features designed by experts, making them less general, and/or require each part or voice to be

encoded separately. An exception is the model proposed by Velarde et al. (2016), which is based on

classifying music from two-dimensional representations such as piano-rolls.

The method proposed by Velarde et al. (2016) learns to discriminate between classes of music by

using filtered images of piano-roll excerpts to predict class labels, exploiting the images’ textures.

However, local structures on the level of motifs prove to be very important in melodic similar-

ity (van Kranenburg, Volk, & Wiering, 2013), and melodic segmentation using small time-scales

has been shown to improve recognition in parent work identification (Velarde, Weyde, & Meredith,

2013). We hypothesize that style recognition requires the use of both large- and small-scale feature

extraction mechanisms. Locality is desired to detect musical patterns even if translated in time

and pitch. Therefore, in this study we extend the method of Velarde et al. (2016), introducing

music segmentation, and test the effect of chunking pitch–time representations into small segments

for classification. In this context, motifs are patterns at the level of a few notes—typically less

than a bar. Local regularities in the form of reused patterns or motifs may be found by comparing

segments at below the bar level. Finally, we experiment with combining classification strategies in

ensembles.

In this paper we make the following contributions:

• We report experimental results matching state-of-the-art composer-identification results on

two different datasets of the Haydn and Mozart string quartets. We also report classification

accuracies on multi-class composer recognition.

• We propose a new classification method which performs similarly well on both audio recordings

and symbolic representations of music.

• We report results of an experiment on discriminating between preludes and fugues from The

Well-Tempered Clavier by J. S. Bach.

Next, we review related approaches to computational music classification, followed by a literature
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review of convolutional mechanisms. In section 2, we present the method and in section 3, we show

the results of our experiments on composer recognition and genre classification. In section 4 we

discuss our findings and we present our conclusions in section 5.

1.1 Computational approaches to music classification

There are only a few classification methods that have been designed for and evaluated on audio and

symbolic representations of music. For example, Tzanetakis, Ermolinskyi, and Cook (2003) demon-

strated the use of pitch histograms for genre classification in both domains (audio and symbolic);

and Cataltepe, Yaslan, and Sonmez (2007) and Lidy, Rauber, Pertusa, and Iñesta (2007) combined

symbolic and audio features to improve their classifiers on genre recognition. The classification

accuracies reported by Tzanetakis et al. (2003) on a dataset containing electronica, classical, jazz,

Irish folk and rock music, reached 50±7% on symbolic representations, 43±7% on synthetic audio,

and 40± 6% on recorded audio files. The classification accuracies reported by Lidy et al. (2007) on

a dataset containing classical, pop and jazz music, reached 75% on symbolic representations, 86%

on synthetic audio, and 93% when symbolic and synthetic audio representations were used in com-

bination. While the approach by Cataltepe et al. (2007) seems to be more accurate using symbolic

representations, the method by Lidy et al. (2007) works better on audio. Genres like classical, pop

and jazz music typically use sets of instruments, and therefore, the use of timbre features appears

to be relevant in the method by Lidy et al. (2007).

In audio music classification, the input to most methods is based on some transformation of

the audio data such as Fourier or mel-frequency cepstral coefficients (MFCCs). In the 2016 edition

of the Music Information Retrieval Evaluation eXchange (MIREX) campaign, two methods were

evaluated on the tasks of audio classical composer identification and latin genre classification (Foleiss

& Tavares, 2016; Lidy & Schindler, 2016). The audio classical composer dataset includes the

following composers: Bach, Beethoven, Brahms, Chopin, Dvorak, Handel, Haydn, Mendelssohon,

Mozart, Schubert and Vivaldi. The latin genre dataset consists of ten genres including axe, bachata,

bolero and others. The method proposed by Foleiss and Tavares (2016), transforms the input to

Short Time Fourier Transform (STFT) images and applies different feature extraction techniques

combined with a Support Vector Machine (SVM) (Foleiss & Tavares, 2016). The accuracy obtained

by this method on classical composer and latin genre classification was 61.8% and 62.7% respectively.



5

The second method evaluated at the MIREX (Lidy & Schindler, 2016), transforms the input to

MFCC images, and aims to learn temporal and timbral features by means of a parallel single layer

convolutional neural network. The classification accuracy obtained by this method on classical

composer and latin genre classification reached 67.6% and 69.5% respectively.1 Both methods use

a combined strategy of image processing and timbre feature extraction.

In the symbolic domain, most computational methods rely on the separate encoding of each part

or voice, and in most cases use a predefined set of musical features (e.g., contrapuntal characteristics)

before applying a k-Nearest Neighbour algorithm (k-NN), an SVM, n− grams, neural networks or

Bayesian classifiers (Herlands et al., 2014; Hillewaere et al., 2010; Hontanilla et al., 2013; Ogihara

& Li, 2008; van Kranenburg & Backer, 2004). On recognizing works by Bach, Handel, Telemann,

Haydn and Mozart, van Kranenburg and Backer (2004) report a classification accuracy of 80.1%,

with a method based on style markers and k-NN classification. Hontanilla et al. (2013) report an

accuracy of 78.8% based on a 4-gram model on the same dataset. In this context we aimed to

design a method that does not require hand-coded feature extraction and is applicable to audio and

symbolic data.

1.2 Convolution mechanisms

It is well established that filtering (and convolution in particular) is ubiquitous in the perceptual

systems of animals (Snowden, Thompson, & Troscianko, 2012). Local processing aspects of visual

perception can be effectively described as a form of filtering or convolution (Murdock Jr., 1979;

Pribram, 1986). In experiments involving functional neuroimaging, Gabor filters have been used to

identify natural images from activity in the visual cortex (Kay, Naselaris, Prenger, & Gallant, 2008).

Audition has been modeled with bandpass filters (Daubechies & Maes, 1996; Karmakar, Kumar, &

Patney, 2011). Machine learning approaches use filtering combined with SVMs or neural networks

for image classification tasks (Bengio, Courville, & Vincent, 2013; LeCun, Kavukcuoglu, & Farabet,

2010; Tuia, Volpi, Mura, Rakotomamonjy, & Flamary, 2014). These techniques help to enhance the

relationships between pixels in the image, e.g. by highlighting edges or smoothing out local varia-

tions. In music classification, filtering has been shown to significantly improve recognition (Velarde

et al., 2016).

1Results published by MIREX 2016 (http://music-ir.org/mirex/wiki/2016:MIREX2016 Results).

http://music-ir.org/mirex/wiki/2016:MIREX2016_Results
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Figure 1: Diagram of the proposed method for music classification of symbolic or audio representations. The
method receives a piece of music and outputs its computed class label. This method consists of an ensemble
of three classifiers denoted by C1, C2 and C3, more specifically C1A, C2A and C3A for audio and C1S,
C2S and C3S for symbolic music representation. Details on the configurations for each classifier are given in
Table 1.

2 Method

An overview of the proposed method is presented in the diagram in Figure 1. The system receives

a piece of music as input and computes its class label as output. It consists of an ensemble of

three classifiers, denoted by C1, C2 and C3. We use classifiers with audio-specific input processing,

henceforth denoted by C1A, C2A and C3A, or classifiers for symbolic music representations, denoted

by C1S, C2S and C3S. Each classifier consists of a sampling, a processing and a classification phase.

The predictions of the three classifiers are combined by majority vote (Kuncheva, 2004) to predict

the final class label. In the multi-class case, if each classifier votes for a different class, the class

assigned is the one whose numeric label is least.

Figure 2 shows in more detail the possible configurations of the individual classifiers. In each

classifier, a piece of music is first sampled to a two dimensional (2D) piano-roll image if the input is

a symbolic representation of music (e.g., MIDI file), or to a 2D magnitude spectrogram image if the

input is an audio file (e.g., WAV file). After sampling this 2D image, either the processing excerpt

or the processing segments phase follows. The main difference between the two processing phases is

their output: the processing excerpt phase has one output per piece, while the processing segments

phase has several outputs per piece. Excerpts correspond to longer musical units containing 400
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Figure 2: Diagram of the possible configurations of individual classifiers. An individual classifier receives a
piece of music, which is first sampled, processed and finally classified. Modules represented by boxes with
thick grey borders are optional processing steps. In the sampling and classification phases, vertically aligned
boxes are exclusive processing steps, such that only one module can be activated. A piece is either processed
in processing excerpt or in processing segments. In the processing excerpt phase both modules are optional,
while in the processing segments phase, the segmentation module is always activated.

onsets, while segments correspond to shorter units of about 1 to 2 quarter notes. Finally, there is a

classification phase employing an SVM or a k-NN algorithm. For pieces that follow the processing

segments phase, the class label of a piece of music is the most frequently predicted class of its

segments. Modules represented in Figure 2 by boxes with thick grey borders are optional processing

steps. Details of each phase are given below.

2.1 Sampling

A symbolic music encoding format is one that provides information similar to that given in a score

and in which the atomic component is typically a note; whereas a PCM audio file represents the

sound of a specific performance of a piece in terms of a sampled waveform. The sampling phase

prepares the input so that music is similarly represented as a 2D pitch–time representation regardless

of whether it is a symbolic encoding or an audio recording. Symbolic representations of music are

sampled to piano-roll images, while audio files are transformed into spectrograms.

2.1.1 Piano-rolls

Symbolic representations of music are sampled to piano-rolls, i.e., 2D binary images representing

the pitch–time structures of pieces of music. Following Velarde et al. (2016), we denote the height
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of such an image by P and its width by T . The piano-rolls are sampled using each note’s pitch,

onset, and duration. Onset and duration are encoded in quarter notes (qn). Chromatic pitch is

represented by MIDI Note Number (MNN). MNN represents pitch as integer numbers from 0 to

127, C4 is mapped to MNN 60. Alternatively, pitch is encoded as morphetic pitch (Meredith, 2006,

p. 127), which is a function only of the vertical position of the note-head of a note on a staff and

the clef in operation on the staff at the position where the note occurs. We compute morphetic

pitch from MIDI files using a pitch spelling algorithm called PS13s1 that requires parameters for

defining a context window around the note to be spelt (Meredith, 2006). The pre-context parameter

is set to 10 notes and post-context is set to 42 notes, as these values performed best in Meredith’s

(2006) evaluation using a dataset of baroque and classical music, the type of music used in this

study. Morphetic pitch intervals are invariant to transposition within the scale, while chromatic

pitch intervals are not (cf. Velarde et al., 2016). The sampling rate for piano-rolls of full-length

pieces, denoted pfl, is 8 samples (i.e., pixels) per qn. Piano-rolls denoted by p400n represent the first

400 notes of each piece. p400n piano-rolls are first sampled with a sampling rate of 8 samples per

qn and then resized by nearest-neighbour interpolation (de Boor, 1978) to reach the size of P × T

pixels. In this case, the sampling rate might vary for each image.

2.1.2 Spectrograms

Spectrograms are used to present spectral information over time and have previously been used

successfully for music classification (Costa et al., 2012; Wu et al., 2011). We use 2D greyscale

images of spectrograms, generated from mono audio signals. Spectrograms are images of size P ×T

pixels taking values from the interval [0, 1]. The audio signals we use are either recordings of human

performances or synthesized from symbolic representations. The synthetic audio files are generated

from the first 400 notes of each piece encoded in symbolic format, using either a horn sound or a

string sound. The horn and string sounds were approximated by frequency modulation synthesis

and sample-based synthesis, respectively.2 The horn and string sounds were sampled at 22.05kHz

2For the horn sound we use the SYNTHTYPE function of the Matlab MIDI Toolbox (Eerola & Toiviainen, 2003).
The horn sound was used as it was the best choice of the two available sounds in the toolbox that we used for rendering
(the alternative was Shepard tones). For the string sound we used fluidsynth (www.fluidsynth.org) with FluidR3 GM
sound font.
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Figure 3: Pitch–time representations of an excerpt of the first 400 onsets of the Prelude in C major, BWV
846, from J. S. Bach’s Well-Tempered Clavier. The upper image shows a piano-roll, while the second and
third show spectrograms of a synthesized audio rendering using a horn sound. The fourth and fifth images
show spectrograms of a 30-second audio clip of a piano recording by Angela Hewitt.
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and 44.1kHz, respectively. The audio recordings correspond to excerpts of 30 seconds. The stereo

recordings are converted to mono by taking the average of the left and right channels.

Spectrograms are obtained using the short-time Fourier transform (STFT) or the variable-Q

transform (VQT) (Schörkhuber, Klapuri, Holighaus, & Dörfler, 2014).3 STFT spectrograms are

computed with a Hamming window of size 1024 samples and 50% overlap, as in (Wu et al., 2011).

VQT spectrograms are computed with 48 frequency bins per octave and the parameter γ = 20,

which is used to increase the time resolution in the lower frequency range (Schörkhuber et al.,

2014).

Figure 3 shows examples of the types of pitch–time representation that we use, including a piano-

roll sampled from an excerpt of a MIDI file, along with spectrograms of recorded and synthesized

audio. As the MNN is logarithmic with respect to frequency, both STFT and VQT spectrograms

are plotted with a logarithmic scale for frequency.

2.1.3 Size of images

The piano-roll images of excerpts p400n are all 56 × 560 pixels. The size of piano-rolls of full-

length pieces (pfl) varies along the time axis according to the length of each piece. In audio,

we use only spectrograms of excerpts of music, denoted by sp400n. Due to the spectral content

in spectrograms, we use a higher resolution than piano-rolls, i.e., 150 pixels on the pitch axis.

To approximately preserve the same amount of information as piano-rolls, we reduce the temporal

resolution of spectrograms, downsampling them to 200 pixels, such that all spectrograms have a size

of 150×200 pixels. STFT spectrograms were downsampled from 344×398 pixels to 150×200 pixels

using bicubic interpolation (Keys, 1981). VQT spectrograms were generated using the resolution

of 150× 200 pixels.

2.2 Processing phase

Once the piece is sampled, it can be processed as an excerpt or as segments as seen in Figure 2.

Only one of the two processing phases is used in any one classifier. The input for the processing

phases is a 2D pitch–time image of size P × T , either a piano-roll or a spectrogram as described

above.

3Toolbox accessed from http://www.cs.tut.fi/sgn/arg/CQT/ on 28 August 2015.

http://www.cs.tut.fi/sgn/arg/CQT/
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2.2.1 Processing excerpt

The processing excerpt phase has two modules, first centring (2.2.2.3) and then filtering (2.2.2.1),

see Figure 2. Each of these two modules can be activated or deactivated in a configuration. All

pitch–time images entering this phase have the same input size of P × T pixels, and correspond

to excerpts of music consisting of either the first 400 notes of a piece, if the input is symbolic or

synthesized representations, or excerpts of 30 seconds in the case of audio recordings.

2.2.2 Processing segments

The processing segments phase uses three modules in the following order: filtering (2.2.2.1), segmen-

tation (2.2.2.2) and centring (2.2.2.3) as seen in Figure 2. Unlike the processing excerpt phase, the

segmentation module is always active in this processing phase. If the centring module is active, each

segment is centred individually. The processing segments phase outputs several segments, which

are sent to the classification phase (2.3).

2.2.2.1 Filtering

For the filtering module of the processing phase, we convolve pitch–time images with a rotationally

symmetric Gaussian filter g:

g(x, y) = e
−(x2+y2)

2σ2 (1)

where (x, y) is the position of a point. We use a Gaussian filter of size 9×9 pixels and the standard

deviation of the Gaussian distribution σ = 3 (as in Velarde et al., 2016). This filter is relatively

small to keep the blurring localised.

The effect of filtering pitch–time representations with the Gaussian filter can be observed in

Figure 4, which presents an excerpt of Haydn’s String Quartet in E-flat Major Opus 1, No. 0, in

four pitch–time representations. It can be observed that the audio version of the musical excerpt is

more complex than its symbolic version, due to the presence of overtones. A smoothing filter makes

pixel-wise comparisons more tolerant to small translations. E.g. if a note has been transposed, the

pixels corresponding to the next higher or lower semitone will still have values not much lower than

the original.
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Figure 4: Excerpt of Haydn’s String Quartet in E-flat Major Opus 1, No. 0, in four pitch–time representations,
from the top to the bottom: Piano-roll (p400n) morphetic pitch representation, followed by its convolution
with a Gaussian filter (second image), VQT spectrogram of the same excerpt synthesized with a horn sound
(third image), and finally the filtered version of the VQT spectrogram (fourth image).

2.2.2.2 Segmentation

We introduce a segmentation phase, as local processing has been found to be important in modelling

melodic similarity for music classification (van Kranenburg et al., 2013; Velarde et al., 2013). We

use constant-length segmentation, which chunks each image into segments of equal length. Given

a pitch–time image of size P × T pixels, this image is segmented along the time dimension into

segments with a constant length of L pixels into segments of size P ×L pixels. If T mod L 6= 0, the

width of the last segment is padded on the left to reach width L. Let n = dT/Le. Depending on

the amount of overlap between the padded nth segment and the (n− 1)th segment, we replace the

(n − 1)th segment with the nth segment using the following procedure: if T mod L 6 0.3L, then

the nth segment replaces the (n− 1)th segment.

2.2.2.3 Centring

We use the pitch range centring technique (as in Velarde et al., 2016). Pitch range centring is

equivalent to pitch transposition, such that the pitch range of the image is centred vertically using

a bounding box.
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2.3 Classification

The input to the classification phase can be one sample if it comes from the processing excerpt

phase, or several samples (processed segments) if they come from the processing segments phase. In

the latter case, the predicted class label of a piece of music is the most frequently predicted class of

its segments. In the classification phase we restricted ourselves to using an SVM or k-NN as shown

in Figure 2. Other classification algorithms could be used, too, such as decision trees or logistic

regression.

We train SVMs with the one-versus-one coding design, based on error-correcting output codes (All-

wein, Schapire, & Singer, 2000). We use linear kernels with Sequential Minimal Optimization (SMO)

and Karush–Kuhn–Tucker conditions set to 0.001, with samples normalized around the mean, and

scaled to have unit standard deviation.

The k-NN classifier is used with Euclidean distance and the next nearest point to break ties. The

Davies and Bouldin (1979) criterion is used to select the number k with the smallest dispersion of

clusters and the centroids’ distances, from a set of odd numbers in the range 3 to 21. k-means cluster-

ing is applied to segments with squared Euclidean distance and the k-means++ algorithm (Arthur

& Vassilvitskii, 2007) for cluster centre initialization. If a cluster loses all its member observations, a

new cluster is created from the furthest point from its centroid. The maximum number of iterations

is set to 100.

2.4 The ensemble of classifiers

In the design of the ensemble, our goal is to have the same structure of individual classifiers for audio

and symbolic representations: one classifier extracting features at large scale (C1), and two classifiers

extracting local features at two small time scales (C2 and C3), as seen in Figure 1. Correspondingly,

C1A, C2A and C3A are used for audio. We use different configurations for each classifier expecting

to have diversity in their predictions when ensembled. Details on the configurations of each classifier

are given in Table 1.

We noticed that k-NN worked better than SVM when pieces went through the processing seg-

ments phase, indicating the presence of several clusters of small musical patterns. However, we did
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Classifier Representation Sampling Processing Filter Centring Classification

C1S p400n Morphetic Excerpt Gaussian No SVM

C2S pfl or p400n Morphetic
Segments,
L = 8 pixels

Gaussian Pitch range
k-NN

C3S pfl or p400n MNN
Segments,
L = 16 pixels

Gaussian No
k-NN

C1A sp400 or sp30s VQT Excerpt Gaussian No SVM

C2A sp400 or sp30s STFT
Segments,
L = 4 pixels

Gaussian No
k-NN

C3A sp400 or sp30s STFT
Segments,
L = 8 pixels

Gaussian No
k-NN

Table 1: Details of the configurations of individual classifiers. Classifiers C1S, C2S and C3S are used for
symbolic representations of music. C1A, C2A and C3A are used for audio files.

not obtain results for using different values of k in our k-NN classifier when using the processing

excerpt phase. We intend to explore this in future work.

For symbolic representations we used morphetic pitch or MNN, while in audio, morphetic encod-

ing would have required the system to have some kind of transcription module, which we avoided.

Instead, we used two sampling methods VQT and STFT. As the time dimension of spectrograms

was downsampled to almost half the size of the piano-roll time dimension, the segment length of

C2A is half that in C2S. The same holds for classifiers C3A and C3S. None of the classifiers used

for audio included centring when processing because of performance reasons. We used centring for

classifier C2S, but not for C2A as it had a negative effect on its performance. In piano-rolls, the top

and bottom regions are very uniform (mostly pixels with value 0), such that shifting bounding boxes

up or down does not cause much change in the texture at the periphery. However, in spectrograms

this is not the case, and we did not apply a technique to preserve the texture at the top and bottom

of the images after centring.

3 Experiments

We present three experiments: two experiments evaluate the performance of our method on com-

poser recognition, while one experiment shows results on genre classification. In all cases, we used

both audio and symbolic representations of music. In the tasks addressed, there is no consistent

“timbre” difference between the classes, as pieces in all classes have the same instrumentation.

The first experiment addresses the task of classifying string quartet movements by Haydn and
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Mozart. This task has been extensively studied on symbolic representations of music (Herlands et

al., 2014; Hillewaere et al., 2010; Hontanilla et al., 2013; van Kranenburg & Backer, 2004; Velarde

et al., 2016), which enables us to benchmark our proposed method for composer classification. The

second experiment on genre classification focuses on discriminating between preludes and fugues

from The Well-Tempered Clavier by J. S. Bach. We could not find any relevant previous work on

this task.

The datasets of the first and second experiments were selected so that the first contained pieces

in the same genre by different composers, while the second contained pieces in different genres by

the same composer. By doing so we can test the two aspects independently.

The third experiment addresses multi-class composer classification. The dataset contains works

by Bach, Handel, Telemann, and also includes the string quartets by Haydn and Mozart. This

dataset has also been studied previously by Hontanilla et al. (2013); van Kranenburg and Backer

(2004).

We perform five-fold cross-validation with a partitioning scheme of 80% for training and 20% for

testing. Moreover, we also perform leave-one-out cross-validation on the string quartet movement

classification task, to compare our methods with the state-of-the-art approaches (Hillewaere et al.,

2010; van Kranenburg & Backer, 2004) that use this validation strategy.

3.1 Experiment 1: Classifying string quartet movements by Haydn and Mozart

3.1.1 Dataset

A string quartet is a multi-movement work for two violins, viola and cello. The earliest string

quartets were written in the 1760s by composers such as Joseph Haydn and Franz Xaver Richter,

with Wolfgang Amadeus Mozart writing his earliest quartets during the 1770s. The number of

movements in early quartets varied and it was only with Haydn’s op.9 (1769–1770) that a standard

four-movement scheme became established, consisting typically of a sonata-form movement, an

adagio, a dance-like movement (often a minuet and trio), and a lively finale (Eisen, Baldassarre, &

Griffiths, n.d.).

Three datasets have been used to evaluate computational methods on the recognition of the

string quartet movements by Haydn and Mozart. These datasets were introduced by van Kranen-
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burg and Backer (2004), Hillewaere et al. (2010) and Herlands et al. (2014). For our experiment,

we used the two datasets available to us, which we denote by HM107 and HM207:

• HM107. This dataset, introduced by van Kranenburg and Backer (2004), consists of 107

movements: 54 string quartet movements by Haydn and 53 movements by Mozart, encoded

as **kern files.4

• HM207. This dataset, introduced by Hillewaere et al. (2010), extends the HM107 dataset

to 207 movements consisting of 112 string quartet movements by Haydn and 95 string quartet

movements by Mozart, encoded as MIDI files.

For the experiments on audio data, datasets HM107 and HM207 were rendered to WAV format,

synthesized as described in section 2.1.2.

We decided against using recordings of human performances of the string quartet movements

as we could not find recordings of both the Haydn and the Mozart quartet movements performed

by the same performers under similar conditions. We wanted to avoid using a collection of audio

files where the Haydn movements could be distinguished from the Mozart movements by audio

features that were not relevant to the movement’s authorship (e.g., different performers, acoustic

environments, recording conditions, mixing styles etc.). One possibility might have been to select

a set of recordings for each composer such that the range of different recording conditions was

approximately equally broad and diverse for each composer. However, we did not explore this

possibility in this study.

3.1.2 Classification results

Table 2 presents classification accuracies in five-fold cross-validation of the classifiers shown in

Table 1. In block (I), it can be seen that the standard deviation of each classifier over the five

folds is below 10%. For this experiment, we observe that ensembling has a positive effect, and

makes the predictions more consistent across datasets. We then evaluated whether classifiers C2S

and C3S would perform differently with less information, such that instead of processing full-length

pieces, they would be given excerpts of music. At the 5% significance level, we found no significant

difference between the performance of C2S and C3S, on either dataset (HM107 and HM207), when

4http://www.music-cog.ohio-state.edu/Humdrum/representations/kern.html

http://www.music-cog.ohio-state.edu/Humdrum/representations/kern.html
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(I) Symbolic representations (full length).

Classifiers
C1S-p400n C2S-pfl C3S-pfl Ensemble

HM107
Mean 0.710 0.663 0.693 0.728
SD 0.092 0.050 0.086 0.091

HM207
Mean 0.662 0.734 0.681 0.739
SD 0.044 0.078 0.045 0.068

(II) Symbolic representations (excerpts).

Classifiers
C1S-p400n C2S-p400n C3S-p400n Ensemble

HM107 Mean 0.710 0.686 0.702 0.722

SD 0.092 0.137 0.090 0.112

HM207 Mean 0.662 0.623 0.686 0.686

SD 0.044 0.063 0.037 0.034

(III) Synthetic audio files: horn sound (excerpts).

Classifiers
C1A-sp400n C2A-sp400n C3A-sp400n Ensemble

HM107
Mean 0.654 0.627 0.682 0.682
SD 0.069 0.067 0.088 0.057

HM207
Mean 0.691 0.677 0.642 0.715
SD 0.105 0.053 0.064 0.052

(IV) Synthetic audio files: string sound (excerpts).

Classifiers
C1A-sp400n C2A-sp400n C3A-sp400n Ensemble

HM107
Mean 0.559 0.571 0.623 0.624
SD 0.109 0.066 0.103 0.108

HM207
Mean 0.570 0.643 0.614 0.667
SD 0.050 0.043 0.031 0.017

Table 2: Haydn and Mozart String Quartet classification accuracies in five-fold cross-validation using symbolic
representations of music and synthetic audio files. Each classifier’s mean and standard deviation (SD) are
reported over the five folds of the cross-validation. In blocks (I) and (II), C1S is given piano-roll excerpts of
400 notes. In block (I), C2S and C3S are given piano-rolls of full-length movements. In block (II), the three
classifiers (C1S, C2S, C3S) are given piano-roll excerpts of 400 notes. In blocks (III) and (IV), the classifiers
(C1A, C2A, C3A) are given spectrogram excerpts of 400 notes. In block (III), the results correspond to
horn sound renderings of the string quartets while in block (IV), the string quartets are rendered with string
sound. The highest accuracies per dataset are highlighted in bold type.
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Classifiers
C1S-p400n C2S-pfl C3S-pfl Ensemble V-2004 H-2010

HM107 0.729 0.710 0.682 0.748 0.794

p-value 0.076 0.032 0.007 0.158

HM207 0.667 0.725 0.700 0.744 0.754

p-value 0.003 0.197 0.054 0.410

Table 3: Haydn and Mozart String Quartet classification accuracies in leave-one-out cross-validation. The ta-
ble presents the classification accuracies of each individual classifier C1S-p400n, C2S-pfl and C3S-pfl and their
ensemble. It also shows the accuracies reported by van Kranenburg and Backer (2004) (V-2004), and Hille-
waere et al. (2010) (H-2010). The highest accuracies per dataset are highlighted in bold type. Additionally,
the table presents one-tailed binomial test p-values related to the differences between the proposed models
and V-2004 and H-2010 on the respective datasets. We tested the hypotheses that the accuracies obtained
by the methods proposed by van Kranenburg and Backer (2004) and Hillewaere et al. (2010) are higher that
those obtained by each classifier. In both datasets, those accuracies are not significantly higher than the
accuracies obtained by the proposed ensemble of classifiers.

less information was used (Wilcoxon signed rank = 89.5, z = 0.616, p = 0.538, n = 20), see

blocks (I) and (II) for classifiers C2S and C3S in Table 2. The test statistic is computed as the

sum of the positive ranks (Gibbons & Chakraborti, 2011). Then, we evaluated the performance

of ensembles on symbolic representations and audio. On the results of both datasets HM107 and

HM207, we found no significant difference in the performance of the ensembles when classifying

music represented symbolically or as audio files synthesized with horn sound (Wilcoxon signed rank

= 19.5, p = 0.875, n = 10), see blocks (II) and (III) in Table 2. There was also no significant

difference between the accuracies obtained with symbolic representations and synthetic renderings

of string sound (Wilcoxon signed rank = 30.5, p = 0.086, n = 10), see blocks (II) and (IV) in

Table 2

Table 3 presents the accuracies of our proposed classifiers on composer recognition in leave-one-

out cross-validation, and the approaches proposed by van Kranenburg and Backer (2004) and Hille-

waere et al. (2010). The method proposed by van Kranenburg and Backer (2004) is based on the

use of style markers (mostly counterpoint characteristics), dimensional reduction and k-NN, which

achieves a classification accuracy of 79.4% on HM107, slightly above that of our ensemble. Hille-

waere et al. (2010) propose a language model that builds an n-gram model of monophonic parts of

the string quartet movements, reaching a classification accuracy of 75.4% on HM207, also slightly

above that of our ensemble model. The approaches reported by Hontanilla et al. (2013) and Her-

lands et al. (2014) are not considered in this comparison, as their test datasets were different from

the ones used here.



19

C1S-p400n C2S-pfl C3S-pfl
HM107 0.378 0.230 0.087

HM207 0.007 0.296 0.097

Table 4: One-tailed, binomial test p-values testing the hypotheses that the accuracies (see Table 3) obtained
by the ensemble in leave-one-out cross-validation are higher that those obtained by each individual classifier
on both datasets (HM107 & HM207) of the Haydn and Mozart string quartets.

We tested the differences in accuracies achieved by our proposed classifiers and the previous

approaches of van Kranenburg and Backer (2004), and Hillewaere et al. (2010) for statistical signifi-

cance with a one-tailed binomial test. From the p-values in Table 3, we observe that the classification

accuracies of van Kranenburg and Backer (2004) and Hillewaere et al. (2010) are not significantly

better than the accuracy of our proposed ensemble of classifiers, which can therefore be claimed to

have reached state-of-the-art performance on both datasets. Note that Hillewaere et al. (2010) only

evaluated their method on the HM207 dataset, which is an extended version of the HM107 dataset.

Finally, we tested the differences between our ensemble of classifiers and each of the individual

classifiers in the ensemble using a one-sided binomial test. The p-values are shown in Table 4. They

show that the ensemble is only in some cases significantly better than the individual classifiers (i.e.,

p < 0.05).

3.2 Experiment 2: Classifying preludes and fugues by J.S. Bach

3.2.1 Dataset

The Well-Tempered Clavier by J. S. Bach consists of two books (published in 1722 and 1742), each

containing 24 preludes and fugues, one in each of the 12 major and 12 minor keys. According

to Stein’s (1979) analysis, preludes elaborate around a short motivic subject through harmonic

exploration, but are heterogeneous in form. Some preludes are imitative and sectional in Invention

form (Book I, Nos. 3, 4, 9, and 11), others in Toccata style, free in form and style (Book I, Nos.

2, 4, 6). On the other hand, fugues are imitative contrapuntal works, typically built upon a single

main theme called the subject. The voices in a fugue start in succession by stating the subject

followed by a secondary theme called the countersubject, designed to be played simultaneously with

the subject, which then starts another voice. A fugue usually consists of a series of entries of the
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subject stated in one or more voices, alternating with episodes in which motivic material derived

from the subject and countersubject is developed.

For this experiment we used three datasets, which we called JSB, JSB-H and JSB-B:

• JSB This dataset consists of MIDI encodings of all 48 preludes and 48 fugues from Bach’s

Well-Tempered Clavier , Books I and II, provided in the MuseData collection.5 For experiments

on audio, JSB was rendered to WAV format, synthesized with horn sound as described in

section 2.1.2.

• JSB-H This dataset consists of 48 preludes and 48 fugues from Bach’s The Well-Tempered

Clavier in MP3 format (Bach, 1742a), performed by pianist Angela Hewitt.

• JSB-B This dataset consists of 48 preludes and 48 fugues from Bach’s The Well-Tempered

Clavier in MP3 format (Bach, 1742b), performed by harpsichordist Pieter-Jan Belder.

.

In a fugue, the voices enter one after the other over the course of the exposition, which imparts a

highly distinctive textural character to the beginnings of these pieces. We assumed that this feature

(the initial texture) could be used to reliably distinguish a fugue from a prelude. In order to avoid

reporting less generalizable results, and to avoid the problem of the “horse” system (Sturm, 2014a),

we tested the effect of including and removing the initial section of all images.

3.2.2 Classification results

Table 5 presents the accuracies when the initial section is included, and Table 6 presents the ac-

curacies when the initial section is excluded. For piano rolls, we removed the initial 60 pixels. For

spectrograms of synthetic audio files, we removed the initial 20 pixels. It can be observed that the

classification accuracies when including the initial notes are higher than those when removing the

initial notes, compare Table 5 and Table 6. The difference in classification accuracy when including

and excluding the initial notes is larger for C1, which extracts features at the large scale, than for

C2 and C3.

For the piano and harpsichord audio recordings of the The Well-Tempered Clavier, we removed

the first 10 seconds of all audio recordings such that the spectrograms were generated from signals

5http://www.musedata.org/encodings/bach/bg/keybd/. Accessed on 23 February 2015.

http://www.musedata.org/encodings/bach/bg/keybd/
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(VIII-“horse”) Symbolic representations.

Classifiers
C1S-p400n C2S-p400n C3S-p400n Ensemble

JSB
Mean 0.978 0.799 0.718 0.841
SD 0.030 0.095 0.051 0.090

(IX-“horse”) Synthetic audio: horn sound.

Classifiers
C1S-p400n C2S-p400n C3S-p400n Ensemble

JSB
Mean 0.885 0.770 0.770 0.821
SD 0.087 0.083 0.051 0.067

Table 5: Classification accuracies for discrimination between preludes and fugues from The Well-Tempered
Clavier by J. S. Bach using symbolic and synthetic audio files, initial notes included. Each classifier’s mean
and standard deviation (SD) are reported over the five folds of the cross-validation.

of 30 seconds, starting at second 10, i.e., not including the first 10 seconds, see Table 6, blocks X

and XI. In Table 6, we observe that the single C1 classifier performs sometimes better than the

ensemble. It could be possible that the texture of preludes and fugues at the large scale is more

relevant for discrimination than the texture at the small scale. It is also possible that a more

sophisticated ensemble method could achieve better results here.

We found no significant difference in the performance of the ensembles when classifying music

represented symbolically or as synthetic audio files (Wilcoxon signed rank = 1, p = 1, n = 5), see

blocks VIII and IX. When comparing the performance of the ensemble on symbolic representations

and piano recordings, we found no significant difference (Wilcoxon signed rank = 15, p = 0.063,

n = 5), see blocks VIII and X. Finally, we found no significant difference between the performance of

the ensemble on symbolic representations and harpsichord recordings (Wilcoxon signed rank = 8.5,

p = 0.375, n = 5), see blocks VIII and XI.

3.3 Experiment 3: Multi-class composer classification

3.3.1 Dataset

In this experiment, we study the ability of the method on multi-class classification, using the

following dataset:

• BHTHM. This dataset, introduced by van Kranenburg and Backer (2004), consists of works

by Bach, Handel, Telemann, Haydn and Mozart. The files are encoded as **kern files:6

6http://www.music-cog.ohio-state.edu/Humdrum/representations/kern.html

http://www.music-cog.ohio-state.edu/Humdrum/representations/kern.html


22

(VIII) Symbolic representations.

Classifiers
C1S-p400n C2S-p400n C3S-p400n Ensemble

JSB
Mean 0.770 0.687 0.729 0.740
SD 0.051 0.072 0.019 0.035

(IX) Synthetic audio: horn sound.

Classifiers
C1S-p400n C2S-p400n C3S-p400n Ensemble

JSB
Mean 0.729 0.749 0.709 0.760
SD 0.120 0.062 0.053 0.047

(X) Audio recordings by pianist Angela Hewitt.

Classifiers
C1A-sp30s C2A-sp30s C3A-sp30s Ensemble

JSB-H
Mean 0.700 0.616 0.554 0.618
SD 0.090 0.044 0.062 0.092

(XI) Audio recordings by harpsichordist Pieter-Jan Belder.

Classifiers
C1A-sp30s C2A-sp30s C3A-sp30s Ensemble

JSB-B
Mean 0.718 0.616 0.616 0.658
SD 0.089 0.095 0.104 0.132

Table 6: Classification accuracies for discrimination between preludes and fugues from The Well-Tempered
Clavier by J. S. Bach using symbolic and synthetic audio files. Each classifier’s mean and standard deviation
(SD) are reported over the five folds of the cross-validation. Initial 60 pixels removed from piano-rolls. Initial
20 pixels removed from spectrograms of synthetic audio files. For the piano and harpsichord audio recordings,
spectrograms were generated from signals of 30 seconds, starting at second 10, i.e., not including the first 10
seconds.
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– J. S. Bach: 40 cantata movements, 33 fugues from the Well-Tempered Clavier, 11 move-

ments from The Art of Fugue, 8 movements from the violin concertos, and 9 fugues for

organ.

– G. F. Handel: 39 movements from the Concerti Grossi op 6, and 14 movements from the

trio sonatas op. 2 and op. 5.

– G. Ph. Telemann: 30 movements from the church cantates, and 24 movements from the

Musique de table

– F. J. Haydn: 54 movements from the string quartets.

– W. A. Mozart: 53 movements from the string quartets.

Audio files were rendered to WAV format, synthesized with horn sound as described in sec-

tion 2.1.2. This dataset is a superset of the Haydn and Mozart string quartet movements HM107.

The dataset BHTHM contains 9 fugues for organ by Bach instead of 14 as described by van Kra-

nenburg and Backer (2004). When reconstructing the dataset, we excluded the pieces marked as

being possibly by Wilhelm Friedemann Bach.

3.3.2 Classification results

The classification results of the multi-class recognition task are presented in Table 7. As in previous

experiments, the recognition rates between symbolic and audio representation are similar. However,

there is a notable difference between the classification accuracies obtained in Experiment 1, on

discriminating Haydn from Mozart, and the accuracies obtained on discriminating Bach, Handel,

Telemann, Haydn and Mozart, see Table 2, blocks (II) and (III) and Table 7, blocks (V) and (VI). It

seems possible that the drop in classification accuracy reported in this experiment on discriminating

between five composers is due to the greater number of classes and a class imbalance, as about half

of the number of samples is of the class Bach.

The classification accuracies reported by van Kranenburg and Backer (2004) and Hontanilla

et al. (2013) are far more accurate than those of any of our proposed classifiers on this task. The

accuracy reported by van Kranenburg and Backer (2004) using style markers and k-NN classification

reaches 80.1% in leave-one-out cross validation. Hontanilla et al. (2013) report an accuracy of 78.8%

based on a 4-gram model. We did not measure the statistical significance of the differences between
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(V) Symbolic representations (excerpts).

Classifiers
C1S-p400n C2S-p400n C3S-p400n Ensemble

BHTHM.
Mean 0.584 0.607 0.492 0.565
SD 0.028 0.050 0.021 0.033

(VI) Synthetic audio (excerpts).

Classifiers
C1S-sp400n C2S-sp400n C3S-sp400n Ensemble

BHTHM.
Mean 0.615 0.623 0.601 0.623
SD 0.052 0.048 0.071 0.054

Table 7: Classification accuracies on multi-class composer recognition for dataset introduced by van Kranen-
burg and Backer (2004) using symbolic representations of music and synthetic audio files. Each classifier’s
mean and standard deviation (SD) are reported over the five folds of the cross-validation.

the results of our method and those of van Kranenburg and Backer (2004) and Hontanilla et al.

(2013), as there is an evident difference in the classification accuracies, and the datasets used on

each study are slightly different, as mentioned in section 3.3.1.

4 Discussion

In this study, our aim was to design a general method for music classification applicable to symbolic

representations and audio recordings. We have shown that the performance of individual classifiers

based on excerpts of music is comparable to the performance of individual classifiers using small

time-scale segments. However, the ensemble was not more accurate than individual classifiers.

Possibly, we would need to exchange one of the k-NN based classifiers with another algorithm or

use a more sophisticated ensemble method.

Our approach was evaluated on datasets where discriminative features do not rely on timbre

information. For our method to be competitive on datasets where timbre is a relevant style descrip-

tor, we might need to incorporate strategies to extract timbre features. On the other hand, since

the proposed method is image-based, and does not use timbral information for its predictions, it can

potentially be extended to deal with graphical notation systems, e.g., scores, tablature, neumatic

notation, etc.

In our case, filtering with a smoothing filter makes pixel-wise comparisons more tolerant to small

translations. In our initial experiments we found Gaussian filters to be effective. An interesting

alternative, that we aim to explore in the future, is learning musical features automatically with
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a deep convolutional neural network. This is also appealing, as it may lead to musical insight by

inspecting the learnt filters.

5 Conclusions

We have introduced a general convolution-based method on pitch–time representations for classifica-

tion of symbolic and audio representations of music. Our evaluations were carried out using datasets

of baroque and classical music, where timbre might not play a relevant role in style discrimination.

Our ensemble classifier performs at a level comparable to state-of-the-art methods (Hillewaere et al.,

2010; van Kranenburg & Backer, 2004), when evaluated on two datasets of the Haydn and Mozart

string quartets. We have shown that the performance of individual classifiers based on excerpts of

music is comparable to the performance of individual classifiers using small time-scale segments,

and that their outputs can be complementary for ensembling. However, in multi-class composer

recognition, methods specialized for classifying symbolic representations of music (Hontanilla et al.,

2013; van Kranenburg & Backer, 2004) are more accurate than our proposed method. Additionally,

we evaluated our proposed classifiers on symbolic representations, synthetic audio and two different

recordings of The Well-Tempered Clavier by J.S Bach, demonstrating the versatility and effec-

tiveness of our method. We found no significant difference between the accuracies obtained using

symbolic representations, synthetic audio and recorded audio. Our experiments were conducted on

baroque and classical music, but we expect our classifiers to generalize to other styles of music and

periods of time, where timbre is not an important style discriminator. The proposed method could

potentially be extended to deal with music represented in a variety of graphical notation systems

such as scores, tablature, neumatic notation, etc.

In the future, we are interested in evaluating our method on datasets benchmarked for tasks

like audio genre classification, where we might need to incorporate strategies to extract timbre

features. A natural next step in this direction would be to use convolutional methods that are

able to learn features autonomously, such as convolutional neural networks (CNNs) and other deep

learning techniques. These techniques have been successfully applied to a wide variety of classifi-

cation tasks including music classification (Choi, Fazekas, Sandler, & Cho, 2017; Lidy & Schindler,

2016; Oramas, Nieto, Barbieri, & Serra, 2017; Pons, Lidy, & Serra, 2016). We have performed
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preliminary experiments with small (two-layered) CNNs. Preliminary investigation of the filters

learned by these networks suggests that these filters may correspond to distinctive pitch and rhyth-

mic patterns. Nevertheless, more systematic experiments with these networks are required before

drawing stronger conclusions. An interesting approach would be to use techniques such as differ-

ential saliency maps (Schlüter, 2016), which help to visualize which inputs of a neural network

lead to a particular prediction, to analyze musical characteristics of pieces in the same style or by

the same composer (or to determine which characteristics of a piece lead to its misclassification).

In our future work, we also intend to explore more complex deep learning architectures for style

recognition.
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