161 research outputs found

    Biochemical Basis of Respiratory Disease Role of integrin-mediated TGFβ activation in the pathogenesis of pulmonary fibrosis

    Get PDF
    Abstract IPF (idiopathic pulmonary fibrosis) is a chronic progressive disease of unknown aetiology without effective treatment. IPF is characterized by excessive collagen deposition within the lung. Recent evidence suggests that the lung epithelium plays a key role in driving the fibrotic response. The current paradigm suggests that, after epithelial injury, there is impaired epithelial proliferation and enhanced epithelial apoptosis. This in turn promotes lung fibrosis through impaired basement membrane repair and increased epithelial-mesenchymal transition. Furthermore, fibroblasts are recruited to the wounded area and adopt a myofibroblast phenotype, with the up-regulation of matrix-synthesizing genes and down-regulation of matrix-degradation genes. There is compelling evidence that the cytokine TGFβ (transforming growth factor β) plays a central role in this process. In normal lung, TGFβ is maintained in an inactive state that is tightly regulated temporally and spatially. One of the major TGFβ-activation pathways involves integrins, and the role of the αvβ6 integrin has been particularly well described in the pathogenesis of IPF. Owing to the pleiotropic nature of TGFβ, strategies that inhibit activation of TGFβ in a cell-or disease-specific manner are attractive for the treatment of chronic fibrotic lung conditions. Therefore the molecular pathways that lead to integrinmediated TGFβ activation must be precisely defined to identify and fully exploit novel therapeutic targets that might ultimately improve the prognosis for patients with IPF

    Suberanilohydroxamic acid prevents TGF-β1-induced COX-2 repression in human lung fibroblasts post-transcriptionally by TIA-1 downregulation

    Get PDF
    Cyclooxygenase-2 (COX-2), with its main antifibrotic metabolite PGE, is regarded as an antifibrotic gene. Repressed COX-2 expression and deficient PGE have been shown to contribute to the activation of lung fibroblasts and excessive deposition of collagen in pulmonary fibrosis. We have previously demonstrated that COX-2 expression in lung fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) is epigenetically silenced and can be restored by epigenetic inhibitors. This study aimed to investigate whether COX-2 downregulation induced by the profibrotic cytokine transforming growth factor-β1 (TGF-β1) in normal lung fibroblasts could be prevented by epigenetic inhibitors. We found that COX-2 protein expression and PGE production were markedly reduced by TGF-β1 and this was prevented by the pan-histone deacetylase inhibitor suberanilohydroxamic acid (SAHA) and to a lesser extent by the DNA demethylating agent Decitabine (DAC), but not by the G9a histone methyltransferase (HMT) inhibitor BIX01294 or the EZH2 HMT inhibitor 3-deazaneplanocin A (DZNep). However, chromatin immunoprecipitation assay revealed that the effect of SAHA was unlikely mediated by histone modifications. Instead 3'-untranslated region (3'-UTR) luciferase reporter assay indicated the involvement of post-transcriptional mechanisms. This was supported by the downregulation by SAHA of the 3'-UTR mRNA binding protein TIA-1 (T-cell intracellular antigen-1), a negative regulator of COX-2 translation. Furthermore, TIA-1 knockdown by siRNA mimicked the effect of SAHA on COX-2 expression. These findings suggest SAHA can prevent TGF-β1-induced COX-2 repression in lung fibroblasts post-transcriptionally through a novel TIA-1-dependent mechanism and provide new insights into the mechanisms underlying its potential antifibrotic activity

    Effect of epigenetic inhibitors on lung fibroblast phenotype change in idiopathic pulmonary fibrosis

    Get PDF
    Introduction and objectives: Idiopathic Pulmonary Fibrosis (IFP) is a fatal interstitial lung disease with unknown aetiology. Lung myofibroblasts (activated fibrobalsts) are the major effector cells in the pathogenesis of IPF. Transforming growth factor-β (TGF-β1) is a potent activator of fibroblasts. Lack of effective treatment options necessitates novel therapeutic approaches. Epigenetic drugs, by inhibiting chromatin modifying enzymes involved in gene expression control, represent promising agents capable of modulating the cellular phenotype. We previously demonstrated that the cyclooxygenase-2 (COX-2) gene is epigenetically silenced in lung fibroblasts from IPF patients (F-IPF)[1] and epigenetic inhibitors and restore COX-2 expression. However, whether epigenetic inhibitors can alter fibroblast phenotype remains unknown. This study aimed to investigate the effect of four different epigenetic enzyme inhibitors on fibroblast phenotype change in IPF. Methods: F-IPF and fibroblasts from non-fibrotic lung (F-NL) treated with TGF-β1 were cultured to test the effects of the epigenetic inhibitors BIX01294 (BIX, G9a histone methyltransferase inhibitor), 3- deazaneplanocin A (DZNep, EZH2 histone methyltransferase inhibitor), SAHA (histone deacetylases inhibitor) and Decitabine (DAC, DNA demethylating agent), in comparison with the COX-2 products prostaglandin E2 (PGE2). The expression of COX-2 and myofibroblast markers collagen 1 (COL1) and α- smooth muscle actin (α-SMA) was assessed. The COX-2 DNA promoter methylation level was analysed by bisulfite sequencing. Results: TGF-β1 induced a myofibroblast phenotype in F-NL characterised by COL1 and α-SMA upregulation and COX-2 downregulation, similar to F-IPF. PGE2 and SAHA were able to maintain/restore COX-2 expression in TGF-β1-induced myofibroblasts and F-IPF. DAC demonstrated similar effect in TGF-β1 treated F-NL only. SAHA also reduced COL1 and α-SMA expression. But DZNep and BIX showed no effect. No differences in the COX-2 promoter methylation was detected between F-NL and F-IPF. Conclusions: Among the epigenetic inhibitors tested, SAHA shows a promising antifibrotic effect by inhibiting fibroblast activation and the underlying molecular mechanisms are currently under investigation

    S52 Suberanilohydroxamic acid (SAHA) inhibits collagen deposition in a transforming growth factor β1-driven precision cut lung slice (PCLS) model of pulmonary fibrosis

    Get PDF
    Introduction and objectives Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive interstitial lung disease that is refractory to current treatment options. Transforming growth factor (TGF)-β1 is a key pro-fibrotic cytokine that plays a crucial role in IPF pathogenesis. Our group previously demonstrated distinct epigenetic modifications involved in repression of the antifibrotic gene cyclooxygenase-2 (COX-2) in fibroblasts from IPF (F-IPF) lungs compared with fibroblasts from non-fibrotic lungs (F-NL). Epigenetic drugs capable of inhibiting DNA and histone modifications may, therefore, represent a putative novel therapy. The aim of this study was to investigate the ability of 4 epigenetic inhibitors to regulate TGF-β-driven fibrosis in ex vivo mouse lung. Methods A precision-cut lung slice (PCLS) model of fibrosis was established using the previously described1 CC10-tTS-rtTA-TGFβ1 transgenic (tgTGF-β1) mouse. The model was first assessed by investigating PCLS overexpression of TGF-β1 in response to stimulation of the transgene by doxycycline treatment. Gene expression of COX-2 and fibrotic markers including collagen were assessed after 4 days of treatment. The anti-fibrotic potential of 4 epigenetic inhibitors; BIX01294 (BIX, inhibitor of G9a histone methyltransferase), 3-deazaneplanocin A (DZNep, inhibitor of EZH2 histone methyltransferase), SAHA (inhibitor of histone deacetylases, HDACs) and Decitabine (DAC, DNA demethylating agent) was investigated. Viability of PCLS was assessed by MTT and Prestoblue® assay. Results Treatment of PCLS from tgTGF-β1 mice with doxycycline induced a concentration-dependent increase in global TGF-β1, pro-fibrotic markers including collagen and pro-inflammatory COX-2, which was comparable to recombinant TGF-β1 treatment. Treatment with three of the epigenetic inhibitors BIX01294, DZNep and DAC did not reduce the pro-fibrotic response following doxycycline treatment. However SAHA demonstrated a significant suppressive effect on COX-2 and collagen expression, while not directly affecting TGF-β1 transgene expression. Conclusions The data suggests that SAHA has the potential to reduce fibrosis in a TGF-β1 driven model of pulmonary fibrosis. Further work is currently underway to assess the anti-fibrotic potential of this drug in tgTGF-β1 animals

    A central role for G9a and EZH2 in the epigenetic silencing of cyclooxygenase-2 in idiopathic pulmonary fibrosis

    Get PDF
    Selective silencing of the cyclooxygenase-2 (COX-2) gene with the loss of the antifibrotic mediator PGE2 contributes to the fibrotic process in idiopathic pulmonary fibrosis (IPF). This study explored the role of G9a- and EZH2-mediated methylation of histone H3 lysine 9 (H3K9me3) and 27 (H3K27me3) in COX-2 silencing in IPF. Chromatin immunoprecipitation (ChIP) and Re-ChIP assays demonstrated marked increases in H3K9me3, H3K27me3 and DNA methylation, together with their respective modifying enzymes G9a, EZH2 and DNA methyltransferases (Dnmts) and respective binding proteins heterochromatin protein 1 (HP1), polycomb protein complex 1 (PRC1) and MeCP2, at the COX-2 promoter in lung fibroblasts from IPF patients (F-IPF) compared with fibroblasts from non-fibrotic lungs (F-NL). HP1, EZH2 and MeCP2 in turn were associated with additional repressive chromatin modifiers in F-IPF. G9a and EZH2 inhibitors and siRNAs and Dnmt1 inhibitor markedly reduced H3K9me3 (49-79%), H3K27me3 (44-81%) and DNA methylation (61-97%) at the COX-2 promoter. This was correlated with increased histone H3 and H4 acetylation, resulting in COX-2 mRNA and protein re-expression in F-IPF. Our results support a central role for G9a- and EZH2-mediated histone hypermethylation and a model of bidirectional, mutually reinforcing and interdependent crosstalk between histone hypermethylation and DNA methylation in COX-2 epigenetic silencing in IPF

    Suberanilohydroxamic acid (SAHA) inhibits collagen deposition in a transforming growth factor β1-driven precision cut lung slice (PCLS) model of pulmonary fibrosis

    Get PDF
    Introduction and Objectives: Idiopathic Pulmonary Fibrosis (IPF) is a chronic, progressive interstitial lung disease that is refractory to current treatment options. Transforming growth factor (TGF)-β1 is a key pro-fibrotic cytokine that plays a crucial role in IPF pathogenesis. Our group previously demonstrated distinct epigenetic modifications involved in repression of the antifibrotic gene cyclooxygenase-2 (COX-2) in fibroblasts from IPF (F-IPF) lungs compared with fibroblasts from non-fibrotic lungs (F-NL). Epigenetic drugs capable of inhibiting DNA and histone modifications may, therefore, represent a putative novel therapy. The aim of this study was to investigate the ability of 4 epigenetic inhibitors to regulate TGF-β-driven fibrosis in ex vivo mouse lung. Methods: A precision-cut lung slice (PCLS) model of fibrosis was established using the previously described [1] CC10-tTS-rtTA-TGFβ1 transgenic (tgTGF-β1) mouse. The model was first assessed by investigating PCLS overexpression of TGF-β1 in response to stimulation of the transgene by doxycycline treatment. Gene expression of COX-2 and fibrotic markers including collagen were assessed after 4 days of treatment. The anti-fibrotic potential of 4 epigenetic inhibitors; BIX01294 (BIX, inhibitor of G9a histone methyltransferase), 3-deazaneplanocin A (DZNep, inhibitor of EZH2 histone methyltransferase), SAHA (inhibitor of histone deacetylases, HDACs) and Decitabine (DAC, DNA demethylating agent) was investigated. Viability of PCLS was assessed by MTT and Prestoblue® viability assay. Results: Treatment of PCLS from tgTGF-β1 mice with doxycycline induced a concentration-dependent increase in global TGF-β1, pro-fibrotic markers including collagen and pro-inflammatory COX-2, which was comparable to recombinant TGF-β1 treatment. Treatment with three of the epigenetic inhibitors BIX01294, DZNep and DAC did not reduce the pro-fibrotic response following doxycycline treatment. However SAHA demonstrated a significant suppressive effect on COX-2 and collagen expression, while not directly affecting TGF-β1 transgene expression. Conclusions: The data suggests that SAHA has the potential to reduce fibrosis in a TGF-β1 driven model of pulmonary fibrosis. Further work is currently underway to assess the anti-fibrotic potential of this drug in tgTGF-β1 animals

    Transforming growth factor-beta promotes rhinovirus replication in bronchial epithelial cells by suppressing the innate immune response

    Get PDF
    Rhinovirus (RV) infection is a major cause of asthma exacerbations which may be due to a deficient innate immune response in the bronchial epithelium. We hypothesized that the pleiotropic cytokine, TGF-?, influences interferon (IFN) production by primary bronchial epithelial cells (PBECs) following RV infection. Exogenous TGF-?(2) increased RV replication and decreased IFN protein secretion in response to RV or double-stranded RNA (dsRNA). Conversely, neutralizing TGF-? antibodies decreased RV replication and increased IFN expression in response to RV or dsRNA. Endogenous TGF-?(2) levels were higher in conditioned media of PBECs from asthmatic donors and the suppressive effect of anti-TGF-? on RV replication was significantly greater in these cells. Basal SMAD-2 activation was reduced when asthmatic PBECs were treated with anti-TGF-? and this was accompanied by suppression of SOCS-1 and SOCS-3 expression. Our results suggest that endogenous TGF-? contributes to a suppressed IFN response to RV infection possibly via SOCS-1 and SOCS-3

    Caffeine inhibits TGFβ activation in epithelial cells, interrupts fibroblast responses to TGFβ, and reduces established fibrosis in ex vivo precision-cut lung slices

    Get PDF
    Caffeine is a commonly used food additive found naturally in many products. In addition to potently stimulating the central nervous system caffeine is able to affect various systems within the body including the cardiovascular and respiratory systems. Importantly, caffeine is used clinically to treat apnoea and bronchopulmonary dysplasia in premature babies. Recently, caffeine has been shown to exhibit antifibrotic effects in the liver in part through reducing collagen expression and deposition, and reducing expression of the profibrotic cytokine TGFβ. The potential antifibrotic effects of caffeine in the lung have not previously been investigated. Using a combined in vitro and ex vivo approach we have demonstrated that caffeine can act as an antifibrotic agent in the lung by acting on two distinct cell types, namely epithelial cells and fibroblasts. Caffeine inhibited TGFβ activation by lung epithelial cells in a concentration-dependent manner but had no effect on TGFβ activation in fibroblasts. Importantly, however, caffeine abrogated profibrotic responses to TGFβ in lung fibroblasts. It inhibited basal expression of the α-smooth muscle actin gene and reduced TGFβ-induced increases in profibrotic genes. Finally, caffeine reduced established bleomycin-induced fibrosis after 5 days treatment in an ex vivo precision-cut lung slice model. Together, these findings suggest that there is merit in further investigating the potential use of caffeine, or its analogues, as antifibrotic agents in the lung
    • …
    corecore