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Abbreviations: CBP, cAMP response element (CRE) binding protein (CREB) binding protein; ChIP, 

chromatin immunoprecipitation; CoREST, co-RE1-silencing transcription factor; COX-2, cyclooxygenase-2; 

DZNep, 3-deazaneplanocin A; Dnmts, DNA methyltransferases; EZH2, enhancer of zeste homolog 2; F-IPF, 

fibroblasts from IPF lung; F-NL, fibroblasts from non-fibrotic lung; HP1, heterochromatin protein 1; HATs, 

histone acetyltransferases; HDACs, histone deacetylases; H3K9me3, histone H3 lysine 9 trimethylation; 

H3K27me3, histone H3 lysine 27 trimethylation; HMTs, histone methyltransferases; IPF, idiopathic 

pulmonary fibrosis; IP, immunoprecipitate; IP-10, IFN-γ-inducible protein of 10 kDa; β-2M, β2-

microglobulin; MBD, methyl-CpG-binding domain; MeCP2, methyl CpG binding protein 2; mSin3a, 

mammalian SIN3 homolog; MeDIP, methylated DNA immunoprecipitation; NCoR, nuclear receptor 

corepressor; PCAF, p300/CBP-associated factor; PcG, polycomb group; PRC, polycomb repressive complex; 

PGE2, prostaglandin E2. 
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ABSTRACT  

Selective silencing of the cyclooxygenase-2 (COX-2) gene with the loss of the antifibrotic mediator PGE2 

contributes to the fibrotic process in idiopathic pulmonary fibrosis (IPF). This study explored the role of 

G9a- and EZH2-mediated methylation of histone H3 lysine 9 (H3K9me3) and 27 (H3K27me3) in COX-2 

silencing in IPF. Chromatin immunoprecipitation (ChIP) and Re-ChIP assays demonstrated marked increases 

in H3K9me3, H3K27me3 and DNA methylation, together with their respective modifying enzymes G9a, 

EZH2 and DNA methyltransferases (Dnmts) and respective binding proteins heterochromatin protein 1 

(HP1), polycomb protein complex 1 (PRC1) and MeCP2, at the COX-2 promoter in lung fibroblasts from 

IPF patients (F-IPF) compared with fibroblasts from non-fibrotic lungs (F-NL). HP1, EZH2 and MeCP2 in 

turn were associated with additional repressive chromatin modifiers in F-IPF. G9a and EZH2 inhibitors and 

siRNAs and Dnmt1 inhibitor markedly reduced H3K9me3 (49-79%), H3K27me3 (44-81%) and DNA 

methylation (61-97%) at the COX-2 promoter. This was correlated with increased histone H3 and H4 

acetylation, resulting in COX-2 mRNA and protein re-expression in F-IPF. Our results support a central role 

for G9a- and EZH2-mediated histone hypermethylation and a model of bidirectional, mutually reinforcing 

and interdependent crosstalk between histone hypermethylation and DNA methylation in COX-2 epigenetic 

silencing in IPF.  

 

 

Key words: histone hypermethylation, DNA methylation, histone deacetylation, antifibrotic gene, lung 

fibroblasts 
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Introduction 

Histones in the chromatin undergo an array of posttranslational modifications to regulate gene transcription. 

Acetylation on lysines by histone acetyltransferases (HATs) and deacetylation by histone deacetylases 

(HDACs) are associated with transcriptional activation and repression, respectively. The most well-

characterized histone methylations are the di- and trimethylation of histone H3 lysine 9 (H3K9me2/3) and 

H3K27me3, which repress gene expression, and H3K4me3, which is associated with gene activation (1). 

H3K9me2/3 is catalyzed by H3K9 specific histone methyltransferases (HMTs) including G9a and SUV39H 

(2). Methylated H3K9 then serves as a docking site for chromatin modifier proteins that mediate downstream 

effects such as heterochromatin protein 1 (HP1), which in turn recruits additional HMTs, DNA 

methyltransferases (Dnmts) and HDAC-containing complexes such as nuclear receptor corepressor (NCoR), 

co-RE1-silencing transcription factor (CoREST), and mammalian SIN3 homolog A (mSin3a) to reinforce 

gene silencing (2). The polycomb group (PcG) proteins are an epigenetic system essentially involved in 

heritable repression of gene transcription but the molecular underpinnings are not entirely clear, and several 

different PcG-mediated mechanisms have been proposed. The enhancer of zeste homolog 2 (EZH2) is the 

catalytic subunit of the polycomb repressive complex 2 (PRC2), which also includes the suppressor of zeste 

12 (SUZ12) protein, embryonic ectoderm development (EED) protein and EED-associated HDAC1 and 

HDAC2 (3). EZH2 acts as a lysine specific HMT that mediates H3K27me3, this modification, in turn, 

provides a specific binding site for another PRC PRC1 to silence the expression of PRC2 target genes by 

blocking the recruitment of transcriptional activation factors and preventing initiation of transcription (4, 5). 

A large percentage of PRC2 target genes contain CpG islands and therefore are likely to undergo DNA 

methylation as a means to ensure a stable repressive state. There are reports indicating that EZH2 directly 

interacts with Dnmts and is necessary for de novo DNA methylation for PRC2 target gene promoters (6, 7). 

DNA methylation by Dnmts at 5-cytosine at CpG islands of gene promoters is the most common 

epigenetic modification associated with transcriptional silencing. Dnmt3a/b are considered to be the de novo 

Dnmts, whereas Dnmt1 is the primary Dnmt for the maintenance, however, the functions of these Dnmts 

overlap extensively (8). Direct inhibition of transcription may be through blocking the binding of 

transcription factors to promoters containing methylated CpG sites (9), while indirect repression may involve 

proteins such as methyl CpG binding protein 2 (MeCP2) that specifically bind to methylated DNA via a 

methyl-CpG-binding domain (MBD) (10). Recent studies suggest that an intimate communication and 

mutual dependence exists between DNA methylation and histone modifications in the process of gene 

silencing. For instance, MBD proteins can bind to methylated DNA and recruit and interact with HDACs and 

HMTs, thereby linking DNA methylation to histone modifications to reinforce epigenetic silencing (10, 11). 
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However, it is likely that neither of the repressive epigenetic mechanisms can be universally applied to the 

silencing of specific genes, as it may be dependent on cell type and physiological or pathophysiological 

context. 

Idiopathic pulmonary fibrosis (IPF) is a deadly respiratory disease of unknown aetiology with a median 

survival of 3–4 years and no effective therapy (12). IPF is characterised by the accumulation and activation 

of lung fibroblasts and subsequent excessive collagen deposition, leading to distortion of the alveolar 

architecture, progressive loss of lung function, and ultimately death. Prostaglandin E2 (PGE2) is a major 

prostanoid in lung structural cells, including fibroblasts, and is derived mainly from the inducible 

cyclooxygenase-2 (COX-2) (13, 14). There is compelling evidence that PGE2 is a key antifibrotic mediator in 

the lung due to its inhibition of fibroblast activation and collagen deposition (15). Animal model studies have 

shown that PGE2 and its analog have protective effects against bleomycin-induced pulmonary fibrosis (16, 

17); in contrast, lack of COX-2 and COX-2-derived PGE2 promotes fibrosis (18, 19). Moreover, COX-2 

expression and PGE2 production are markedly reduced in fibroblasts from IPF lung (F-IPF) (20) and PGE2
 
in 

bronchoalveolar lavage fluid (21) and COX-2 expression in lung biopsies (22) are also reduced in IPF 

patients. These findings suggest that the COX-2/PGE2 anti-fibrotic mechanism is lost in IPF, which in turn 

promotes fibrosis and contributes to IPF pathogenesis.  

We have previously demonstrated that COX-2 gene transcription was defective in F-IPF compared with 

fibroblasts from non-fibrotic lung (F-NL) due to deficient histone acetylation as a result of decreased 

recruitment of HATs and increased recruitment of the HDAC-containing transcriptional co-repressor 

complexes to the COX-2 promoter (13). However, whether histone methylation and DNA methylation 

impact on COX-2 repression in IPF is unknown. In this study we explored the role of G9a- and EZH2-

mediated histone methylation and DNA methylation and the interactions between histone modifications and 

DNA methylation in COX-2 epigenetic silencing in F-IPF. We report here that G9a-mediated H3K9 

methylation and EZH2-mediated H3K27 methylation were markedly increased at the COX-2 promoter in F-

IPF in a interdependent manner and were tightly associated with DNA methylation and histone 

hypoacetylation, thereby resulting in the epigenetic silencing of the COX-2 gene in F-IPF. Disruption of 

G9a- and EZH2-mediated histone methylation by epigenetic inhibitors and G9a and EZH2 siRNAs reversed 

repressive epigenetic modifications and restored COX-2 expression and PGE2 production. These findings 

demonstrate a novel and central role for G9a- and EZH2-mediated histone methylation in COX-2 epigenetic 

silencing in IPF and provide a functional connection between histone methylation and DNA methylation. The 

intrinsic reversibility and mutual dependence of these epigenetic changes may prove to be beneficial in the 

reactivation of the anti-fibrotic COX-2 gene in IPF. 
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MATERIALS AND METHODS 

Fibroblast cell culture 

F-IPF and F-NL from the explanted lungs of patients with IPF who underwent lung transplantation at the 

University of Pittsburgh Medical Center and from normal lung tissues obtained from organ donors under a 

protocol approved by the University of Pittsburgh Institutional Review Board were cultured as described 

previously (23). The six F-IPF donors were all male smokers with an average age of 62.95 years (range 40.7-

74.1) and an average smoking history of 24.17 pack years (range 4-70). The six F-NL donors included three 

males, one female and two with undisclosed gender; the age of one donor was undisclosed and the average 

age of the other five donors was 42.2 years (range 22-63); one donor was a non-smoker, one had a 13 pack 

year smoking history and the smoking history of the other four was undisclosed. F-IPF and F-NL cells from 

6 donors each were used at passages 5 and 6, respectively, to ensure purity and maintain the differences 

present in vivo. The cells were growth-arrested in serum free medium for 24 hours prior to stimulation with 

recombinant human IL-1β (R&D Systems, Abingdon, Oxfordshire, UK) (1 ng/ml) in serum free medium. At 

the indicated time points the cells were harvested for subsequent analysis and their responses were compared. 

 

Chromatin immunoprecipitation (ChIP) and Re-ChIP assays 

ChIP assay was performed using reagents and protocols from the ChIP-IP express kit (Active Motif, La 

Hulpe, Belgium) as described previously (13). Antibodies against H3K4me3, H3K9me2, H3K9me3, 

H3K27me3, EZH2, acetylated histone H3 and H4, total histone H3 and H4 (EMD Millipore Corporation, 

Billerica, MA, USA), G9a, SUV39H1, HP1 (recognizes HP1α, β, and γ), PRC1, EED, Dnmt1, Dnmt3a, 

MeCP2 CoREST, NCoR, mSin3a (Santa Cruz Biotechnology, Dallas, TX, USA), and respective control 

antibodies were used for immunoprecipitation. Purified DNA from the immunoprecipitated antibody-protein-

chromatin complexes was subject to real-time PCR amplification with primers designed specifically for the 

COX-2 promoter region (–299/+6) as described previously (13). The amounts of COX-2 promoter DNA that 

were present in the bound (immunoprecipitated) fractions were calculated relative to the input control by 

using the 2
–
ΔΔ

CT 
method, where ΔΔCT is the difference between the threshold cycle (CT) for the bound 

fraction and the CT for the input fraction. The association of acetylated and methylated histones H3 and H4 

with the COX-2 promoter DNA was further normalized to the association of total histones H3 and H4 with 

the COX-2 DNA.  

Re-ChIP assay was conducted by using a Re-ChIP-IT express kit (Active Motif) as described previously 

(24). After the first IP using antibody against HP-1, EZH2 or MeCP2, the immunoprecipitated chromatin was 

removed from the magnetic beads in a buffer that prevents the majority of the first antibody from 

participating into the second IP reaction. The chromatin was desalted and a second ChIP step was performed 
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using specific antibodies against NCoR, CoREST, mSin3a, Dnmt3a, Dnmt1, G9a, SUV39H1, EZH2 and 

PRC1. Purified DNA from the sequentially immunoprecipitated antibody–protein–chromatin complexes was 

analyzed by real-time PCR as described above. 

 

Methylated DNA immunoprecipitation (MeDIP) assay 

MeDIP assay was performed to detect DNA methylation at the CpG islands within the human COX-2 

promoter with the use of a ChIP-IT express kit (Active Motif). Briefly, after treatment chromatin was 

extracted from the cells and aliquoted as described previously (13). Aliquots of chromatin were then 

incubated with no antibody, or a non-immune rabbit IgG antibody (Santa Cruz) as negative controls, or with 

a specific IgG antibody against 5-methylcytosine (Active Motif) overnight at 4°C. The MeDIP reaction was 

calibrated with a set of two DNA standards (897 bp) that are linear dsDNA with the same sequence (Zymo 

Research, Irvine, CA, USA; see manufacturer’s website). The only difference is that each contains either 

100% unmodified cytosines or 5-methylcytosines. Since the sequence and extent of cytosine modification is 

known, these DNA standards were also used to spike the chromatin to demonstrate the specificity of the 

MeDIP assay. The immunoprecipitated antibody-DNA complexes were then collected and DNA was 

extracted, purified and subjected to real-time PCR amplification of the minimum COX-2 promoter region 

(positions -299 to +6) with key transcription factor binding sites (13) and several known CpG sites (25), with 

specifically designed primers (13). DNA methylation in distal regions upstream and downstream of the 

minimum COX-2 promoter was also analyzed with specifically designed primers: forward, 5’-

TCAGCCCAACTGCTTATGTG-3’, and reverse, 5’-GGGAGTCATCTCGGTGTGAT-3’, for the region 

from -12360 to -12142; forward, 5’-CCCAACAAATTTCAGACGCT-3’, and reverse, 5’-

TACATTTGGGATGCTGGTCA-3’, for the region from -2440 to -2206; forward, 5’-

AAGTGGGTGCCATACTCAGC-3’, and reverse, 5’-GAGAAGGCTTCCCAGCTTTT-3’, for the region 

from +1727 to +2093; and forward, 5’-CTTCCATCTCCAAGACCCAA-3’, and reverse, 5’-

TCTTCCTGCTAGGCTACCCA-3’, for the region from +21087 to +21307. The amount of COX-2 promoter 

DNA in the immunoprecipitates (IPs) was calculated as described (13). The amounts of COX-2 promoter 

DNA present in both non-antibody and non-immune rabbit IgG negative control IPs were minimal and 

markedly smaller than those in the specific-antibody IPs.  

 

COX-2 mRNA and protein expression 

COX-2 mRNA and protein expression in resting and cytokine-stimulated cells was examined by real-time 

PCR and Western blot, respectively, as previously reported (13, 14).  
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Epigenetic inhibitor study 

To assess the role of G9a HMT, Dnmt1 and HDACs in COX-2 repression in F-IPF, inhibitors for these 

enzymes were used. The G9a HMT specific inhibitor BIX-01294 (2-(Hexahydro-4-methyl-1H-1,4-diazepin-

1-yl)-6,7-dimethoxy-N-[1-(phenylmethyl)-4-piperidinyl]-4-quinazolinamine trihydrochloride hydrate) (26) 

and the Dnmt1 inhibitor RG108 (27) were purchased from Sigma-Aldrich (Gillingham, Dorset, UK). The 

EZH2 inhibitor 3-Deazaneplanocin A (DZNep) (28) was purchased from Cayman Chemical (Ann Arbor MI, 

USA). F-NL and F-IPF cells were treated without or with BIX-01294 (100 nM), RG108 (5 µM), or DZNep 

(10 nM) in medium with serum for 2 days before they reached confluence and then treated without or with 

the inhibitors in serum free medium for 1 day before being incubated without or with IL-1β (1 ng/ml) in the 

presence or absence of the inhibitors for 4 and 24 h. Samples were then collected for epigenetic analyses by 

ChIP assay and MeDIP and for COX-2 mRNA and protein expression by real-time RT-PCR and Western 

blotting, respectively.  

 

siRNA transfection  

All transient transfections were conducted by using HiPerFect Transfection Reagent according to the 

recommended protocol of the manufacturer (Qiagen, Hilden, Germany). A total of 2×10
6
 F-IPF cells were 

seeded into each 100 mm culture dish in culture media containing serum. 600 ng predesigned siRNA directed 

against human G9a (Cat No. SI00091203, target sequence: CACCATGAACATCGATCGCAA), EZH2 (Cat 

No. SI00063966, target sequence: CAGACGAGCTGATGAAGTAAA) or ALLStars negative control siRNA 

(Cat No. 1027280, with no homology to any known mammalian gene) (Qiagen) was diluted in 1.6 ml culture 

medium and 48 µl HiPerFect Transfection Reagent was added to the diluted siRNA, the preparation was 

mixed and incubated at room temperature for 10 min. The transfection mixture was added to cells in 100 mm 

culture dish in a total volume of 4 ml and the cells were incubated for 3 h, after which the culture medium 

was made up to 7 ml with a final siRNA concentration of 5 nM and cells were incubated for a further 48 h. 

Cells were then serum starved for 24 h before being treated without or with IL-1β (1 ng/ml) for 2, 4 and 24 h 

for analyses of epigenetic modifications, G9a, EZH2 and COX-2 mRNA and protein expression, 

respectively.  

 

PGE2 assay 

The PGE2 concentration in the culture medium was measured by a commercially available enzyme-linked 

immunosorbent assay kit (Cayman Chemical). 
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Statistics 

The data were presented as mean ± SEM from experiments with three to six separate cell lines performed in 

duplicate. Non-parametric ANOVA was used to evaluate statistical significance of the mean values between 

F-NL and F-IPF, this was followed by Wilcoxon rank sum test for comparisons between F-NL and F-IPF at 

specific time point. A P value less than 0.05 was considered statistically significant. 

 

RESULTS 

Histone H3 is repressively methylated at the COX-2 promoter in F-IPF due to increased G9a and 

EZH2 recruitment  

We have previously shown that both histones H3 and H4 are insufficiently acetylated at the COX-2 promoter 

in F-IPF compared with F-NL (13). As H3K4me3 and H3K9me3/H3K27me3 are typical epigenetic marks 

linked to active and repressive chromatin, respectively, we analyzed these marks at the COX-2 promoter by 

ChIP assay. We found that under unstimulated conditions H3K4me3 at the COX-2 promoter was slightly 

lower in F-IPF than in F-NL, whereas it was the opposite for H3K9me3 and H3K27me3. Treatment with IL-

1β resulted in a marked increase in H3K4me3 in F-NL (P < 0.01 1 h after stimulation compared with 

unstimulated) but not in F-IPF, and the level of H3K4me3 at the COX-2 promoter was significantly lower in 

F-IPF than F-NL (Fig. 1A). In contrast, under both unstimulated and cytokine-stimulated conditions 

H3K9me3 and H3K27me3 at the COX-2 promoter were elevated in F-IPF compared with F-NL (Fig. 1B 

and 1C). In addition, the association of the two major HMTs G9a and EZH2, responsible for H3K9me3 and 

H3K27me3 respectively (Fig. 1D and 1F), but not the HMT SUV39H1 also responsible for H3K9me3 (Fig. 

1E), with the COX-2 promoter was also consistently increased in F-IPF compared with F-NL with or without 

cytokine treatment. The data thus suggest that histone H3K9 and H3K27 are hypermethylated at the COX-2 

promoter in F-IPF as a result of increased recruitment of G9a and EZH2, respectively.  

 

Recruitment of repressive chromatin modifiers to methylated H3K9 and H3K27 is increased at the 

COX-2 promoter in F-IPF 

Since methylated histone H3K9 and H3K27 serve as a binding platform for HP1 and PRC1, respectively, we 

anticipated that the respective association of HP1 and PRC1 with H3K9me3 and H3K27me3 at the COX-2 

promoter could be increased in F-IPF cells. Using Re-ChIP assay we indeed detected HP1 and PRC1 in the 

IPs of H3K9me3 and H3K27me3, respectively, at the COX-2 promoter under unstimulated conditions (Fig. 

2A and 2B). As HP1 may act as an adapter in mediating histone deacetylation and DNA methylation through 

its recruitment of respective epigenetic enzymes, we went on to explore the association of HP1 with G9a, 

Dnmts, and transcriptional repressors NCoR, CoREST and mSin3a by Re-ChIP assay. As shown in Fig. 2C 
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and 2D, enrichment of the COX-2 promoter DNA was observed in both primary and secondary IPs in F-IPF 

cells, demonstrating physical association of HP1 with G9a, Dnmt1, Dnmt3a, NCoR, CoREST, and mSin3a at 

the COX-2 promoter. EZH2 is the catalytic subunit of PRC2, which also includes EED (3), and has been 

shown to interact with Dnmts to cause DNA methylation for some gene promoters (6, 7). We found that 

EZH2 was associated with EED, Dnmt1, Dnmt3a (Fig. 2E) and that EED was associated with NCoR, 

CoREST, and mSin3a at the COX-2 promoter in F-IPF (Fig. 2F). These observations suggest that G9a-

mediated H3K9me3 and EZH2-mediated H3K27me3 are associated with additional chromatin modifiers to 

the COX-2 promoter through HP1 and EZH2/EED, respectively, which may result in DNA methylation and 

histone deacetylation and reinforcement of COX-2 epigenetic silencing in F-IPF.  

 

COX-2 promoter DNA is methylated in F-IPF 

As the COX-2 promoter is known to contain CpG islands and COX-2 repression is commonly associated 

with DNA methylation, we anticipated that the COX-2 promoter DNA could be methylated, thereby 

contributing to the COX-2 gene repression in F-IPF. By applying the MeDIP assay with an antibody against 

5-methylcytosine and amplifying the immunoprecipitated COX-2 promoter DNA by real-time PCR using 

specific primers for different regions of the COX-2 promoter, we revealed that the minimum COX-2 

promoter region (-299/+6) was significantly more methylated in F-IPF than in F-NL in unstimulated 

conditions (Fig. 3A). The two regions upstream (-2440/-2206 and -12360/-12142) of the minimum COX-2 

promoter were also more methylated in F-IPF than in F-NL but to a much lesser extent than the minimum 

COX-2 promoter, whereas no meaningful methylation was observed in the two regions downstream 

(+1727/+2093 and +21087/+21307) of the minimum COX-2 promoter (Fig. 3A). As DNA methylation is 

catalyzed by Dnmts, we next assessed whether the recruitment of Dnmts to the COX-2 promoter was 

increased in F-IPF. By using ChIP assay we found that the association of Dnmt1 and Dnmt3a with the COX-

2 promoter was significantly increased in F-IPF compared with F-NL in unstimulated conditions and marked, 

but not statistically significant, increases were maintained after cytokine stimulation (Fig. 3B and 3C). 

However, no difference was observed between F-IPF and F-NL in the global protein expression of Dnmt1 

and Dnmt3a as analysed by Western blotting (data not shown). These findings suggest that the COX-2 

promoter DNA is methylated in F-IPF as a result of increased recruitment of Dnmts to the COX-2 promoter 

rather than increased expression of Dnmt proteins. Since methylated DNA serves as a binding platform for 

MeCP2, we anticipated that MeCP2 association with the COX-2 promoter could be increased in F-IPF cells. 

ChIP analysis indeed revealed that there was a trend of increased association of MeCP2 with the COX-2 

promoter in F-IPF compared with F-NL with or without cytokine treatment, although the differences were 

not statistically significant (Fig. 3D). As MeCP2 can mediate gene silencing through recruitment of 
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chromatin modifiers, we went on to explore the association of MeCP2 with HMTs, Dnmts and transcriptional 

repressors by Re-ChIP assay. As shown in Fig. 3E and 3F, enrichment of the COX-2 promoter DNA was 

observed in both primary and secondary IPs in F-IPF cells, demonstrating physical association of MeCP2 

with G9a, EZH2, Dnmt1, Dnmt3a, NCoR, CoREST and mSin3a at the COX-2 promoter and suggesting that 

DNA methylation, like histone methylation, could also recruit additional epigenetic enzymes to the COX-2 

promoter through MeCP2 and lead to reinforced COX-2 epigenetic silencing in F-IPF.  

 

Epigenetic inhibitors reduce repressive histone modifications at the COX-2 promoter in F-IPF 

We have previously shown that HDAC inhibitors increase histone acetylation at the COX-2 promoter site 

and restore COX-2 expression in F-IPF (13). To determine whether HMT and Dnmt inhibitors could 

modulate histone modifications at the COX-2 promoter site we examined the effect of the G9a inhibitor BIX-

01294, the EZH2 inhibitor DZNep and the Dnmt1 inhibitor RG108 in F-IPF cells. Treatment with BIX-

01294, either alone or with IL-1β, reduced H3K9me3 at the COX-2 promoter by 65% and 57%, respectively, 

compared with untreated cells, whereas treatment with RG108 reduced H3K9me3 by 49%, either alone or 

with IL-1β (Fig. 4A), this was accompanied by reduced HP1 association with the COX-2 promoter (Fig. 4B). 

Similarly, treatment of F-IPF cells with DZNep, either alone or with IL-1β, decreased H3K27me3 at the 

COX-2 promoter by 44% and 49%, respectively, compared with untreated cells, whereas treatment with 

RG108 reduced H3K27me3 by 65% and 46%, respectively (Fig. 4C). Treatment of F-IPF with the inhibitors 

also resulted in an increase in histone H3 and H4 acetylation without cytokine stimulation compared with 

untreated cells and further increase was generally observed after IL-1β stimulation (Fig. 4D and 4E). The 

results show that repressive histone methylation at the COX-2 promoter in F-IPF can be removed by 

inhibition of not only the activity of respective HMTs but also the activity of Dnmt1 and that histone 

acetylation at the COX-2 promoter in F-IPF can be increased by inhibition of the activity of HMTs and 

Dnmt1. The data also strongly suggest that G9a and EZH2 play a central role in mediating repressive histone 

modifications at the COX-2 promoter in F-IPF and that Dnmt activity is required for this process.  

 

G9a and EZH2 knockdown alters histone modifications at the COX-2 promoter in F-IPF 

As pharmacological inhibitors of epigenetic enzymes can have off target effects, to further validate the role 

of G9a and EZH2 in mediating COX-2 repression in F-IPF, we applied siRNA to knock down G9a and 

EZH2 expression in these cells. Like G9a inhibition by BIX-01294, treatment of F-IPF cells with G9a 

siRNA, but not the control siRNA, either alone or with IL-1β, markedly reduced H3K9me3 at the COX-2 

promoter by 79% and 60%, respectively, compared with untreated cells (Fig. 5A), this was also accompanied 
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by reduced HP1 association with the COX-2 promoter (Fig. 5B). Similarly, like EZH2 inhibition by DZNep, 

treatment of F-IPF cells with EZH2 siRNA, either alone or with IL-1β, resulted in a marked decrease in 

H3K27me3 (81% and 55%, respectively) at the COX-2 promoter compared with untreated cells (Fig. 5C). 

Treatment of F-IPF with G9a siRNA and EZH2 siRNA also led to a slight increase in histone H3 and H4 

acetylation without cytokine stimulation compared with untreated cells, and a marked increase was observed 

after IL-1β stimulation (Fig. 5D and 5E); this was accompanied by significant increases in the recruitment of 

HATs CBP (cAMP response element (CRE) binding protein (CREB) binding protein), p300, and PCAF 

(p300/CBP-associated factor) to the COX-2 promoter (Fig. 5F). In addition, G9a siRNA and EZH2 siRNA 

restored the response of F-IPF cells to IL-1β to increase the active histone modification H3K4me3 at the 

COX-2 promoter (Fig. 5G). The data confirm the effect of G9a and EZH2 inhibitors in Fig. 4 and a central 

role for G9a and EZH2 in mediating repressive histone modifications at the COX-2 promoter in F-IPF.  

 

G9a and EZH2 are required for DNA methylation at the COX-2 promoter in F-IPF 

As Dnmt activity could be required for G9a- and EZH2-mediated histone H3 hypermethylation at the COX-2 

promoter in F-IPF (Fig. 4A and 4C), we went on to assess whether G9a and EZH2 could be required for 

COX-2 promoter DNA methylation. As shown in Fig. 6A, treatment of the cells with either BIX-01294, or 

DZNep, or RG108 reduced DNA methylation by 62%, 83% and 64%, respectively, at the minimum COX-2 

promoter region (-299/+6), with significant inhibition by DZNep. The inhibitors also similarly reduced the 

binding of MeCP2 to the COX-2 promoter, although the reduction was not statistically significant (Fig. 6B). 

Furthermore, both G9a and EZH2 siRNAs, but not the control siRNA, also markedly reduced DNA 

methylation at the minimum COX-2 promoter by 86% and 97%, respectively, as compared with untreated F-

IPF cells, to a level lower than that observed with F-NL cells (Fig. 6C), thereby confirming the effect of the 

G9a and EZH2 inhibitors. The combined results of Figure 4 and Figure 6 thus suggest that G9a and EZH2 

are critically involved in the COX-2 promoter DNA methylation and that histone methylation and DNA 

methylation act interdependently to cause COX-2 epigenetic silencing in IPF cells; removal of one of these 

repressive epigenetic modifications leads to the removal of the other repressive epigenetic modifications and 

consequently the derepression of the COX-2 gene. 

 

G9a and EZH2 inhibition and disruption restore COX-2 expression in F-IPF 

To investigate whether G9a and EZH2 inhibition could lead to the COX-2 gene derepression, F-IPF cells 

were treated with BIX-01294, DZNep, or RG108, either alone or with the potent COX-2 inducer IL-1β. BIX-

01294 and DZNep alone, but not RG108, caused a slight but significant increase in COX-2 mRNA 

expression, as analyzed by real-time RT-PCR, whereas marked increases in COX-2 mRNA were observed 
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when the cells were treated with BIX-01294, DZNep, or RG108 and IL-1β together, marked increases in 

COX-2 mRNA (by 8.57, 7.25 and 3.34 fold, respectively) were observed compared with IL-1β alone (Fig. 

7A). Western blotting analysis revealed no COX-2 protein expression when the cells were treated with the 

inhibitors or with IL-1β alone; however, when the cells were treated with the inhibitors and IL-1β together, 

marked increases in COX-2 protein expression were observed (Fig. 7B). To find out whether the restoration 

of COX-2 protein expression in F-IPF was accompanied by PGE2 production, PGE2 in the medium was also 

analyzed. As shown in Fig. 7C, no increase in PGE2 production was observed when the cells were treated 

with the inhibitors alone and IL-1β alone stimulated a small increase in PGE2 production; however, when the 

cells were treated with IL-1β and BIX-01294, DZNep, or RG108, further increases by 1.78, 2.77, and 1.54 

fold, respectively, were observed compared with IL-1β alone. The results show that cytokine-induced COX-2 

expression in F-IPF can be restored by inhibition of the activity of either G9a, EZH2 or Dnmt1, leading to the 

reproduction of PGE2. 

To explore the effectiveness of G9a and EZH2 siRNA in F-IPF cells, G9a and EZH2 mRNA expression 

was analyzed after siRNA transfection. As shown in Fig. 8A and 8B, G9a and EZH2 siRNAs, but not the 

control siRNA, reduced their respective mRNAs by 96% and 76% compared with control cells. Knocking 

down G9a and EZH2 with the siRNAs alone did not increase COX-2 mRNA; however, when the cells were 

stimulated with IL-1β, marked increases in COX-2 mRNA (by 6.77 and 4.26 fold, respectively) were 

observed compared with IL-1β alone (Fig. 8C). Western blotting also revealed that G9a and EZH2 siRNAs 

almost abolished the expression of their respective proteins, whereas the control siRNA and IL-1β had no 

effect (Fig. 8D). No COX-2 protein was detected in cells treated with G9a and EZH2 siRNAs or IL-1β alone, 

however, when the cells were stimulated with IL-1β, marked increases in COX-2 protein expression were 

observed (Fig. 8D). The results therefore strongly suggest that G9a and EZH2 play a central role mediating 

the epigenetic silencing of COX-2 in IPF. 
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Discussion 

We have previously demonstrated that histone deacetylation as a result of decreased recruitment of HATs 

and increased recruitment of HDACs to the COX-2 promoter is involved in COX-2 silencing in F-IPF (13). 

Although histone methylation has been shown to act cooperatively with histone acetylation and DNA 

methylation to determine a heritable transcriptional state, the role of histone methylation in the repression of 

antifibrotic genes, including COX-2, in IPF has not been explored so far. The current study demonstrated that 

histone H3 was repressively methylated at the COX-2 promoter as manifested by reduced H3K4me3 and 

increased H3K9me3 and H3K27me3 in F-IPF compared with F-NL, which was correlated with the 

recruitment of the H3K9 specific HMT G9a and the H3K27 specific HMT EZH2. Disruption of the function 

and expression of G9a and EZH2 by their respective inhibitors and siRNAs resulted in marked reduction of 

H3K9me3 and H3K27me3 as well as DNA methylation at the COX-2 promoter and led to the restoration of 

COX-2 expression and PGE2 production. The data strongly suggest that G9a- and EZH2-mediated histone 

methylation plays a central role and act interdependently with DNA methylation in the epigenetic silencing 

of COX-2 in IPF. 

It is well established that G9a- and EZH2-mediated histone H3K9 and H3K27 hypermethylation 

contributes to the epigenetic silencing of tumor suppressor genes. G9a and EZH2 are upregulated in a 

number of different cancers (29, 30) and seem to be required for the maintenance of the malignant 

phenotype. However, G9a expression may not be correlated with global H3K9 methylation (31). We have 

previously reported that G9a and H3K9me3 are markedly increased at the promoter of another repressed 

antifibrotic gene IFN-γ-inducible protein of 10 kDa (IP-10) in F-IPF but the global G9a expression remains 

the same between F-IPF and F-NL (24). In the current study we found no difference in the mRNA levels of 

EZH2 between F-IPF and F-NL (data not shown), the increase of H3K9 and H3K27 methylation at the COX-

2 promoter in F-IPF was therefore likely due to gene promoter specific recruitment of G9a and EZH2.  

G9a-mediated H3K9 hypermethylation (both H3K9me2 and H3K9me3) serves as a docking site for the 

chromatin modifier protein HP1, which in turn recruits additional chromatin modifiers to reinforce gene 

silencing (2). On the other hand, EZH2-mediated H3K27me3 provides a specific binding site for PRC1 to 

silence the expression of PRC2 target genes by blocking the recruitment of transcriptional activation factors 

and preventing initiation of transcription (4, 5). EZH2 also interacts with Dnmts and another PRC2 protein 

EED interacts with HDAC1 and HDAC2 (3), both are necessary for a stable repressive state for PRC target 

gene promoters (6, 7). We revealed that HP1 was associated with H3K9me3, G9a, Dnmt1, Dnmt3a and the 

transcriptional repressor complexes CoREST and mSin3a (containing HDAC1 and 2) and NCoR (containing 

HDAC3) at the COX-2 promoter in F-IPF, suggesting that G9a-mediated H3K9 methylation may lead to 
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DNA methylation and histone deacetylation to reinforce epigenetic silencing of the COX-2 gene. This is 

supported by our previous findings that interactions between G9a-mediated H3K9 methylation and histone 

deacetylation are critically involved in the repression of IP-10 in IPF (24) and suggests that similar epigenetic 

deregulation may account for the silencing of a group of antifibrotic genes in IPF. We also noticed that PRC1 

was associated with EZH2-mediated H3K27me3, EZH2 was associated with EED, Dnmt1 and Dnmt3a, and 

EED was associated with NCoR, CoREST and mSin3a, at the COX-2 promoter in IPF, suggesting that COX-

2 silence in IPF could be mediated by PRC1 through blocking transcriptional activation factor recruitment 

and preventing transcription initiation and that EZH2/EED may also lead to DNA methylation and histone 

deacetylation to reinforce epigenetic silencing of the COX-2 gene. To the best of our knowledge, this is the 

first report to show PRC-mediated COX-2 epigenetic silencing in any cell system.  

To further assess the role of G9a and EZH2 in the epigenetic silencing of the COX-2 gene in F-IPF, the 

effects of the G9a specific inhibitor BIX-01294 and the EZH2 inhibitor DZNep were studied. We found that 

BIX-01294 significantly reduced not only H3K9me3 and HP1 binding but also DNA methylation and 

MeCP2 binding and increased histone H3 and H4 acetylation at the COX-2 promoter. Similarly, DZNep 

reduced not only H3K27me3 but also DNA methylation and MeCP2 binding and increased histone H3 and 

H4 acetylation at the COX-2 promoter. This is consistent with previous findings showing that BIX-01294 

reduces H3K9 methylation and HP1 recruitment but increases histone H3 and H4 acetylation at the IP-10 

promoter in F-IPF (24). However, epigenetic inhibitors may have off-target effects as demonstrated by a 

recent study showing inhibition of both EZH2 and the H3K9 HMT SETDB1 by DZNep (28). By using the 

G9a inhibitor BIX-01294 we observed a total loss of HP1 binding after about 60% reduction of H3K9me3, 

whereas G9a siRNA-reduced HP1 binding was proportional to the reduction of H3K9me3. Although the 

reasons for this discrepancy are unknown, it is possible that this may be an off-target effect of BIX-01294. 

The variable levels of effects of epigenetic inhibitors on COX-2 mRNA/protein expression and PGE2 

production despite similar effects on methylation status at the COX-2 promoter may also suggest off-target 

effects of the inhibitors on genes that may have control on COX-2 expression and function. It is therefore 

necessary to apply siRNA knockdown to validate the findings with epigenetic inhibitors. We revealed in our 

current study that successful siRNA knockdown of G9a and EZH2 recapitulated the effects of G9a and EZH2 

inhibitors. This is consistent with recent findings that G9a knockdown reduces H3K9 methylation and the 

recruitment of HP1, Dnmt1 and HDAC1 to the promoter of the cell adhesion molecule Ep-CAM and restores 

its expression in lung cancer cells (31) and that G9a knockdown restores E-cadherin expression by 

suppressing H3K9 methylation and blocking DNA methylation in human breast cancer cells (32). As a result 

of the removal of epigenetic repression by inhibition and knockdown of G9a and EZH2, active epigenetic 
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modifications such as histone acetylation as a result of increased HAT recruitment and the capability of F-

IPF to express COX-2 and produce the antifibrotic mediator PGE2 in response to IL-1β were restored. The 

data thus strongly suggest that G9a- and EZH2-mediated histone methylation is closely associated with DNA 

methylation and histone deacetylation and that G9a and EZH2 inhibition and knockdown lead to decreased 

recruitment of repressive chromatin modifiers to the COX-2 promoter and the switching of local epigenetic 

status from repression to activation.  

It has been demonstrated that DNA methylation-mediated transcriptional silencing is a predominant 

mechanism for COX-2 silencing in various tumors and that the methylation inhibitor 5-deoxy-2’-azacytidine 

restores COX-2 gene expression (33, 34). The current study demonstrated that the COX-2 promoter was 

markedly more methylated in F-IPF than in F-NL, which was correlated with increased recruitment of Dnmt1 

and Dnmt3a. As there was no difference in global Dnmt1 and Dnmt3a protein expression between F-NL and 

F-IPF (data not shown), DNA methylation at the COX-2 promoter in F-IPF was likely due to gene specific 

recruitment of Dnmts. Similarly, global DNA methylation does not contribute to the methylation of the 

promoter of the anti-fibrotic gene Thy-1 in lung fibroblasts with repressed Thy-1 expression (35). DNA 

methylation can also lead to histone modifications to establish stable gene silencing through the recruitment 

of additional chromatin modifiers by proteins with methyl DNA binding activity, such as MeCP2 (10, 11). 

However, the role of such interactions in COX-2 repression has not been understood. Our current study 

showed that the increase of DNA methylation was correlated with increased H3K9me3 and H3K27me3 and 

decreased H3 and H4 acetylation at the COX-2 promoter in F-IPF, suggesting that DNA methylation and 

histone modifications act cooperatively in COX-2 repression in IPF. We also presented evidence that there 

was a trend of increased association of MeCP2 with the COX-2 promoter in F-IPF cells compared with F-NL 

cells and MeCP2 was associated with G9a, EZH2, Dnmt1, Dnmt3a, NCoR, CoREST, and mSin3a at the 

COX-2 promoter, suggesting that DNA methylation/MeCP2-mediated recruitment of chromatin modifiers 

may reinforce H3K9 and H3K27 methylation, histone deacetylation, DNA methylation and eventually COX-

2 silencing. This was supported by the findings that the Dnmt1 inhibitor RG108 not only inhibited DNA 

methylation and MeCP2 binding but also reduced H3K9 and H3K27 methylation and increased histone H3 

and H4 acetylation at the COX-2 promoter, eventually resulting in COX-2 derepression in F-IPF. Although 

Dnmt1 represents the preferential target of RG108, as the catalytic domains of all three Dnmts are highly 

conserved, they are likely to have similar interactions with RG108 (27). There is also evidence that the 

functions of these Dnmts overlap extensively (8), making it impractical to knock down individual Dnmt. 

These observations suggest that the effect of RG108 observed in this study could be attributed to its 

inhibition of all three Dnmts and/or to its inhibition of the Dnmt1 activities on both de novo methylation and 

maintenance of methylation. However, it is also possible that the inhibition of H3K9 and H3K27 methylation 
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by RG108 at the COX-2 promoter could be a direct effect as it has been shown that another Dnmt inhibitor 5-

Aza-2’-deoxycitidine could act directly on G9a and EZH2 to reduce H3K9me3 and H3K27me3 at the Bad 

promoter (36). Nevertheless, the fact that MeCP2 is associated with HMTs and HDACs supports a 

bidirectional and reinforcing interaction between DNA methylation and histone methylation in the epigenetic 

silencing of COX-2 in IPF.  

It is increasingly recognized that F-IPF represent a persistently activated phenotype of lung fibroblasts 

and play a key role in the development and progression of IPF. Evidence is emerging to support the concept 

that these cells are epigenetically reprogramed so that a group of antifibrotic genes, including COX-2, Thy-1 

and IP-10, are epigenetically silenced, in a way similar to the epigenetic silencing of tumor suppressor genes 

in cancers. Here we provide further evidence that deregulated histone and DNA methylation contributes to 

the epigenetic silencing of COX-2 in F-IPF. However, one clear limitation of the current study is that it 

explored the epigenetic events at the end of the diseases process. Although the results are novel and valuable 

in understanding the epigenetic mechanisms involved in the epigenetic silencing of antifibrotic gene in IPF, 

little is known about the causes and order of events by which repressive patterns of histone and DNA 

methylation are established and maintained during the disease development and progression. It is of great 

importance to identify the critical initiating event that triggers antifibrotic gene silencing in order to 

understand the mechanisms underlying persistent fibroblast activation and pulmonary fibrogenesis. It is also 

plausible to propose that environmental and endogenous factors represent key signals that trigger distinct 

epigenetic changes and influence the order of epigenetic events, leading to antifibrotic gene silencing during 

pulmonary fibrogenesis. Preliminary data from our ongoing studies show that chronic treatment of F-NL 

with the profibrotic cytokine TGFβ1 markedly reduces IL-1β-induced COX-2 expression, which is 

accompanied by increased DNA methylation and decreased histone H3 and H4 acetylation at the COX-2 

promoter, and that PGE2 not only prevents TGFβ1-induced COX-2 repression in F-NL but also restores 

COX-2 expression in F-IPF (unpublished data). These observations provide a hint that repressive epigenetic 

modifications at the COX-2 promoter could be introduced, at least to some extent, by TGFβ1 treatment and 

that endogenously produced PGE2 after COX-2 reexpression could play a key role in preventing and 

reversing lung fibroblast activation in IPF. However, further studies are needed to understand the 

mechanisms and order of epigenetic events leading to the epigenetic silencing of COX-2 and other 

antifibrotic genes in IPF.  

Regardless of the hierarchical order of events, our observations support a central role for G9a- and 

EZH2-mediated histone hypermethylation and a model of bidirectional, mutually reinforcing and 

interdependent crosstalk between histone hypermethylation and DNA methylation in the epigenetic silencing 

of COX-2 and potentially other antifibrotic genes in IPF (Fig. 9). Our data also suggest that the machinery 
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for the expression of COX-2 and probably other antifibrotic genes, in IPF remains intact and functional and 

can mediate reexpression if the repressive epigenetic modifications are removed. Thus, the epigenetic 

enzymes regulating these epigenetic modifications and their crosstalk in these cells may represent a key 

therapeutic target to reactivate silenced antifibrotic genes for treating this progressive and fatal disease.  
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Figure legends 

FIGURE 1. Histone H3 is repressively hypermethylated and HMT recruitment is increased at the COX-2 

promoter in F- IPF. Confluent and serum-starved F-NL and F-IPF cells were incubated with IL-1β (1 ng/ml) 

for the times indicated. The protein-DNA complexes were cross-linked by formaldehyde treatment and 

chromatin pellets were extracted and sonicated. H3K4me3 (A), H3K9me3 (B), H3K27me3 (C), G9a (D), 

SUV39H1 (E), EZH2 (F), and total histone H3 (A to C) were immunoprecipitated with specific antibodies. 

The associated COX-2 promoter DNA was amplified by real-time PCR and the amount was calculated and 

normalized to total histone H3 (A to C) or to input control (D to F). The data are expressed as mean ± SEM 

from experiments with six separate F-NL and F-IPF cell lines performed in duplicate. *, P < 0.05, **, P < 

0.005 compared with corresponding F-NL.  

 

FIGURE 2. HP1, PRC1, and repressive epigenetic enzymes are associated with the COX-2 promoter in F- 

IPF. Confluent F-IPF cells were serum-starved for 24 h. The protein-DNA complexes were cross-linked by 

formaldehyde treatment and chromatin pellets were extracted and sonicated. H3K9me3 (A), H3K27me3 (B), 

HP1 (C and D), EZH2 (E), and EED (F) were immunoprecipitated with specific antibodies first, and then the 

immunoprecipitate (IP) was immunoprecipitated again with antibodies against HP1 (A), PRC1 (B), G9a (C), 

Dnmt1, Dnmt3a (C and E), EED (E), NCoR, CoREST, and mSin3a (D and F). The associated COX-2 

promoter DNA was amplified by real-time PCR and the amount was calculated and normalized to input 

control. The data are expressed as mean ± SEM from experiments with six separate F-IPF cell lines 

performed in duplicate.  

 

FIGURE 3. COX-2 promoter DNA methylation and Dnmt association with the COX-2 promoter are 

increased in F-IPF. A) Confluent F-NL and F-IPF cells were serum-starved for 24 h and then lysed. DNA 

was extracted. Methylated DNA was immunoprecipitated with an antibody against 5-methylcytosine. The 

associated DNA was amplified by real-time PCR using specific primers for different regions of the COX-2 

promoter and its upstream and downstream regions. B to D) Confluent and serum-starved F-NL and F-IPF 

cells were incubated with IL-1β (1 ng/ml) for the times indicated. The protein-DNA complexes were cross-

linked by formaldehyde treatment and chromatin pellets were extracted and sonicated. Dnmt1 (B), Dnmt3a 

(C), and MeCP2 (D) were immunoprecipitated with specific antibodies. The associated COX-2 promoter 

DNA was amplified by real-time PCR and the amount was calculated and normalized to input control. E and 

F) Confluent F-IPF cells were serum-starved for 24 h. The protein-DNA complexes were cross-linked by 

formaldehyde treatment and chromatin pellets were extracted and sonicated. MeCP2 was 

immunoprecipitated with specific antibody first, and then the immunoprecipitate (IP) was 
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immunoprecipitated again with antibodies against G9a, EZH2, Dnmt1, Dnmt3a (E), NCoR, CoREST, and 

mSin3a (F). The associated COX-2 promoter DNA was amplified by real-time PCR and the amount was 

calculated and normalized to input control. The data are expressed as mean ± SEM from experiments with 

six separate F-NL and/or F-IPF cell lines performed in duplicate. *, P < 0.05 compared with corresponding 

F-NL. 

 

FIGURE 4. Epigenetic inhibitors of G9a, EZH2 and Dnmt1 reduce H3K9me3, H3K27me3 and increase 

histone H3 and H4 acetylation at the COX-2 promoter in F-IPF. F-IPF cells were incubated without or with 

BIX-01294 (100 nM), RG109 (5 µM), or DZNep (10 nM) in medium with serum for 2 days before they 

reached confluence and then treated without or with the inhibitors in serum free medium for 1 day before 

being incubated without or with IL-1β (1 ng/ml) in the presence or absence of the inhibitors for a further 4 h. 

The protein-DNA complexes were then cross-linked by formaldehyde treatment and chromatin pellets were 

extracted and sonicated. H3K9me3 (A), HP1 (B), H3K27me3 (C), acetylated histone H3 (D) and H4 (E) were 

immunoprecipitated with specific antibodies. The associated COX-2 promoter DNA was amplified by real-

time PCR and the amount was calculated and normalized to total histone H3 (A, C, D), total histone H4 (E) 

or input control (B). The data are expressed as mean ± SEM from experiments with six separate F-IPF cell 

lines performed in duplicate. *, P < 0.05, **, P < 0.005, ***, P < 0.001 compared with corresponding 

untreated cells. 

 

FIGURE 5. G9a and EZH2 siRNAs reduce H3K9me3, H3K27me3 and increase histone H3 and H4 

acetylation and H3K4me3 at the COX-2 promoter in F-IPF. F-IPF cells were transfected with control siRNA, 

G9a siRNA, or EZH2 siRNA in medium with serum for 2 days and serum-starved for 1 day before being 

incubated without or with IL-1β (1 ng/ml) in the presence or absence of the siRNAs for a further 4 h. The 

protein-DNA complexes were then cross-linked by formaldehyde treatment and chromatin pellets were 

extracted and sonicated. H3K9me3 (A), HP1 (B), H3K27me3 (C), acetylated histone H3 (D) and H4 (E), 

CBP, p300, PCAF (F) and H3K4me3 (G) were immunoprecipitated with specific antibodies. The associated 

COX-2 promoter DNA was amplified by real-time PCR and the amount was calculated and normalized to 

total histone H3 (A, C, D, G), total histone H4 (E) or input control (B, F). The data are expressed as mean ± 

SEM from experiments with six separate F-IPF cell lines performed in duplicate. *, P < 0.05, **, P < 0.005 

compared with corresponding untreated or control cells. 

 

FIGURE 6. G9a and EZH2 inhibitors and siRNAs reduce COX-2 promoter DNA methylation in F-IPF. A 
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and B) F-IPF cells were incubated without or with BIX-01294 (100 nM), DZNep (10 nM), or RG109 (5 µM) 

in medium with serum for 2 days before they reached confluence and then treated without or with the 

inhibitors in serum free medium for 1 day. The cells were then lysed and DNA was extracted and sheared. 

Methylated DNA was immunoprecipitated with an antibody against 5-methylcytosine. The associated DNA 

was amplified by real-time PCR using specific primers for the COX-2 promoter DNA (A). The protein-DNA 

complexes were cross-linked by formaldehyde treatment and chromatin pellets were extracted and sonicated. 

MeCP2 was immunoprecipitated with a specific antibody. The associated COX-2 promoter DNA was 

amplified by real-time PCR and the amount was calculated and normalized to input control (B). C) F-IPF 

cells were transfected with control siRNA, G9a siRNA, or EZH2 siRNA in medium with serum for 2 days 

and serum-starved for 1 day. The cells were then lysed and DNA was extracted and sheared. Methylated 

DNA was immunoprecipitated with an antibody against 5-methylcytosine. The associated DNA was 

amplified by real-time PCR using specific primers for the COX-2 promoter DNA with samples from F-NL as 

a reference (C). The data are expressed as mean ± SEM from experiments with six separate F-IPF and F-NL 

cell lines performed in duplicate. *, P < 0.05 compared with control cells. 

 

FIGURE 7. Epigenetic inhibitors of G9a, EZH2 and Dnmt1 restore COX-2 expression and PGE2 production 

in F-IPF. F-IPF cells were incubated without or with BIX-01294 (100 nM), DZNep (10 nM), or RG108 (5 

µM) in medium with serum for 2 days before they reached confluence and then treated without or with the 

inhibitors in serum free medium for 1 day before being incubated without or with IL-1β (1 ng/ml) in the 

presence or absence of the inhibitors for a further 4 h (A) or 24 h (B and C)). A) Total RNA was isolated and 

mRNA levels of COX-2 and the internal control β2-microglobulin (β2M) were determined by real-time RT-

PCR. The data are calculated as the ratio of COX-2 mRNA and β-2M mRNA and are expressed as mean ± 

SEM of six separate experiments performed in duplicate. B) Total cell lysates were collected for Western 

blotting analysis of COX-2 with GAPDH as the loading control. This is representative of three separate 

experiments with different F-IPF cell lines. Relative density was calculated by normalizing the density of the 

COX-2 bands against that of the GAPDH bands from three separate experiments. C) Culture media were 

collected for PGE2 assay. A and C) Data are expressed as mean ± SEM from experiments with six separate F-

IPF cell lines performed in duplicate. *, P < 0.05, **, P < 0.005 compared with corresponding untreated 

cells. 

 

FIGURE 8. G9a and EZH2 siRNAs restore COX-2 expression and PGE2 production in F-IPF. A and B) F-

IPF cells were transfected with control siRNA, G9a siRNA, or EZH2 siRNA in medium with serum for 2 

days and serum-starved for 1 day. Total RNA was isolated and mRNA levels of G9a (A) and EZH2 (B) were 
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determined by real-time RT-PCR. The data are calculated as the ratio of G9a and EZH2 mRNA and the 

internal control β2-microglobulin (β2M) mRNA. C-F) F-IPF cells transfected with or without siRNAs were 

serum-starved for 1 day before being incubated without or with IL-1β (1 ng/ml) for a further 4 h (C) or 24 h 

(D-F). C) Total RNA was isolated and mRNA levels of COX-2 were determined by real-time RT-PCR. The 

data are calculated as the ratio of COX-2 mRNA and the internal control β2M mRNA. D) Total cell lysates 

were collected for Western blotting analysis of COX-2, G9a and EZH2 with β2M as the loading control. This 

is representative of three separate experiments with different F-IPF cell lines. E) Relative density of the 

Western blot was calculated by normalizing the density of the COX-2, EZH2 and G9a bands against that of 

the β2M bands from three separate experiments. F) Culture media were collected for PGE2 assay. A-C and F) 

Data are expressed as mean ± SEM from experiments with six separate F-IPF cell lines performed in 

duplicate. *, P < 0.05, **, P < 0.005 compared with corresponding control or untreated cells. 

 

FIGURE 9. A hypothetical model depicting the central role of G9a- and EZH2-mediated histone methylation 

and the interdependent and mutually reinforcing crosstalk between histone methylation and DNA 

methylation in COX-2 epigenetic silencing in IPF. G9a- and EZH2-mediated H3K9me3 and H3K27me3 

result in the recruitment Dnmts and HDAC-containing complexes via HP1 and EZH2/EED, respectively, to 

the COX-2 promoter. This then leads to or reinforces DNA methylation and histone deacetylation. DNA 

methylation in turn causes the recruitment of G9a, EZH2 and HDAC-containing complexes through MeCP2 

to strengthen H3K9me3, H3K27me3 and histone deacetylation, leading to reinforced epigenetic silencing of 

the COX-2 gene in IPF. Therefore G9a- and EZH2-mediated H3K9me3 and H3K27me3 interact with DNA 

methylation in a bidirectional and mutually dependent manner to reinforce COX-2 epigenetic silencing in 

IPF. Disruption of any of these epigenetic modifications by inhibition or knockdown of G9a, EZH2, or Dnmt 

leads to the removal of the other repressive epigenetic modifications, resulting in an active chromatin state 

and reactivation of COX-2 in IPF.  


