9 research outputs found

    Inertial particle clustering due to turbulence in an air jet

    Get PDF
    ABSTRACT: Explosive volcanic eruptions create turbulent plumes of fine ash particles. When these particles collide in the presence of moisture and electrostatic fields they combine into larger aggregates, which can significantly change the atmospheric residence time of the airborne cloud. Previous studies have suggested that turbulence may lead to preferential concentration—also known as clustering—of particles within the flow, increasing the likelihood of collisions and aggregation. Few experimental studies have quantified these processes for volcanic plumes. This behavior was investigated using a particle-laden air jet. By systematically varying the exit speed and the size, density, and concentration of particles, flows were produced with Reynolds numbers of 4940 to 19300, Stokes numbers of 1.0 to 17.4 (based on the convective scale), and particle mass loadings of 0.3 to 3.9%. Specific emphasis is placed on two Stokes numbers of 1.9 and 17.4, which differ by nearly an order of magnitude. Particle image velocimetry was employed to measure the velocity distribution within a two-dimensional rectangular region along the jet centerline in each experiment. Voronoï decomposition was used to quantify the extent of preferential concentration by measuring the distribution of cell sizes around each individual particle. Results show that particles exhibit clustering behavior when Stokes numbers are close to 1. We also measured the radial distribution functions (RDFs) to quantify the likelihood of particle collisions. At low Stokes number, the RDF magnitude was significantly higher, which corresponds to increased collision frequency in the particle-laden jet. Computational analysis finds that increasing the RDF by a factor of 20 results in a doubling of peak aggregate size. These findings demonstrate that preferential concentration due to turbulent structures could have important effects on collision frequencies, ash aggregation, and electrification in volcanic plumes

    Candidate tumor-suppressor genes on chromosome arm 8p in early-onset and high-grade breast cancers

    No full text
    Loss of genetic material from chromosome arm 8p occurs commonly in breast carcinomas, suggesting that this region is the site of one or more tumor-suppressor genes (TSGs). Comparative genomic hybridization analysis showed that 8p loss is more common in breast cancers from pre-menopausal compared with post-menopausal patients, as well as in high-grade breast cancers, regardless of the menopausal status. Subsequent high-resolution gene expression profiling of genes mapped to chromosome arm 8p, on an extended cohort of clinical tumor samples, indicated a similar dichotomy of breast cancer clinicopathologic types. Some of these genes showed differential downregulation in early-onset and later-onset, high-grade cancers compared with lower-grade, later-onset cancers. Three such genes were analysed further by in situ technologies, performed on tissue microarrays representing breast tumor and normal tissue samples. PCM1, which encodes a centrosomal protein, and DUSP4/MKP-2, which encodes a MAP kinase phosphatase, both showed frequent gene and protein loss in carcinomas. In contrast, there was an excess of cases showing loss of expression in the absence of reduced gene copy number of SFRP1, which encodes a dominant-negative receptor for Wnt-family ligands. These candidate TSGs may constitute some of the molecular drivers of chromosome arm 8p loss in breast carcinogenesis
    corecore