174 research outputs found

    Les dichotomies en histoire des femmes : un défi

    Get PDF
    L’article traduit pour Clio HFS est le premier chapitre de Writing Women’s History : International Perspectives (1991), premier ouvrage Ă©ditĂ© par La FĂ©dĂ©ration internationale pour la recherche en histoire des femmes nĂ©e en 1987. Il dissĂšque six dichotomies qui ont permis ou permettent encore de penser les relations entre hommes et femmes et l’écriture de leur passĂ©. Si les trois premiĂšres (nature/culture, travail/famille, public/privĂ©), profondĂ©ment inscrites dans la culture occidentale moderne et source de hiĂ©rarchies et d’exclusions, ont Ă©tĂ© Ă  la fois utilisĂ©es et contestĂ©es par les historiennes des annĂ©es 1970 et 1980, trois nouvelles ont surgi des dĂ©bats intellectuels et politiques (sexe/genre, Ă©galitĂ©/diffĂ©rence, intĂ©gration/autonomie). Ces nouvelles dichotomies doivent ĂȘtre aussi dĂ©construites et dĂ©passĂ©es, pour aller de l’avant sur le plan politique et historiographique.This article is the translation of the first chapter of Writing Women’s History : International Perspectives (1991), the first book published by the International Federation for Research in Women’s History created in 1987. It analyzes six dichotomies, which have durably structured both the thinking and the writing about the relationship between the sexes in the past. The first three (nature/culture, work/family, public/private) are profoundly inscribed in modern western culture and have contributed to hierarchies and exclusions. While historians since the 1970s and 1980s have both used and questioned these dichotomies, three new ones have emerged more recently in intellectual and political debate (sex/gender, equality/difference, integration/autonomy). The author encourages scholars to deconstruct the latter in order to move forward both politically and theoretically

    Temperature but not ocean acidification affects energy metabolism and enzyme activities in the blue mussel, Mytilus edulis

    Get PDF
    1. In mosaic marine habitats, such as intertidal zones, ocean acidification (OA) is exacerbated by high variability of pH, temperature, and biological CO2 production. The nonlinear interactions among these drivers can be context-specific and their effect on organisms in these habitats remains largely unknown, warranting further investigation. 2. We were particularly interested in Mytilus edulis (the blue mussel) from intertidal zones of the Gulf of Maine (GOM), USA, for this study. GOM is a hot spot of global climate change (average sea surface temperature (SST) increasing by \u3e0.2°C/year) with \u3e60% decline in mussel population over the past 40 years. 3. Here, we utilize bioenergetic underpinnings to identify limits of stress tolerance in M. edulis from GOM exposed to warming and OA. We have measured whole organism oxygen consumption rates and metabolic biomarkers in mussels exposed to control and elevated temperatures (10 vs. 15°C, respectively) and current and moderately elevated PCO2 levels (~400 vs. 800 ”atm, respectively). 4. Our study demonstrates that adult M. edulis from GOM are metabolically resilient to the moderate OA scenario but responsive to warming as seen in changes in metabolic rate, energy reserves (total lipids), metabolite profiles (glucose and osmolyte dimethyl amine), and enzyme activities (carbonic anhydrase and calcium ATPase). 5. Our results are in agreement with recent literature that OA scenarios for the next 100–300 years do not affect this species, possibly as a consequence of maintaining its in vivo acid-base balance

    Impact of Ocean Acidification on Energy Metabolism of Oyster, Crassostrea gigas—Changes in Metabolic Pathways and Thermal Response

    Get PDF
    Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated Pco2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and Peco2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO− 3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperaturedependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks

    Impact of ocean acidification on escape performance of the king scallop, Pecten maximus, from Norway

    Get PDF
    The ongoing process of ocean acidification already affects marine life, and according to the concept of oxygen and capacity limitation of thermal tolerance, these effects may be intensified at the borders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4 °C (winter) or to 10 °C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold-exposed (4 °C) groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55 % under normocapnia to 90 % under hypercapnia. We therefore excluded the 4 °C groups from further experimentation. Scallops at 10 °C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normocapnia- and hypercapnia-exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared with normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal’s performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow

    In vivo 31P-MRS of muscle bioenergetics in marine invertebrates: Future ocean limits scallops' performance

    Get PDF
    Object: Dynamic in vivo 31P-NMR spectroscopy in combination with Magnetic Resonance Imaging (MRI) was used to study muscle bioenergetics of boreal and Arctic scallops (Pecten maximus and Chlamys islandica) to test the hypothesis that future Ocean Warming and Acidification (OWA) will impair the performance of marine invertebrates. Materials & methods: Experiments were conducted following the recommendations for studies of muscle bioenergetics in vertebrates. Animals were long-term incubated under different environmental conditions: controls at 0 °C for C. islandica and 15 °C for P. maximus under ambient PCO2 of 0.039 kPa, a warm exposure with +5 °C (5 °C and 20 °C, respectively) under ambient PCO2 (OW group), and a combined exposure to warmed acidified conditions (5 °C and 20 °C, 0.112 kPa PCO2, OWA group). Scallops were placed in a 4.7 T MR animal scanner and the energetic status of the adductor muscle was determined under resting conditions using in vivo 31P-NMR spectroscopy. The surplus oxidative flux (Qmax) was quantified by recording the recovery of arginine phosphate (PLA) directly after moderate swimming exercise of the scallops. Results: Measurements led to reproducible results within each experimental group. Under projected future conditions resting PLA levels (PLArest) were reduced, indicating reduced energy reserves in warming exposed scallops per se. In comparison to vertebrate muscle tissue surplus Qmax of scallop muscle was about one order of magnitude lower. This can be explained by lower mitochondrial contents and capacities in invertebrate than vertebrate muscle tissue. Warm exposed scallops showed a slower recovery rate of PLA levels (kPLA) and a reduced surplus Qmax. Elevated PCO2 did not affected PLA recovery further. Conclusion: Dynamic in vivo 31P-NMR spectroscopy revealed constrained residual aerobic power budgets in boreal and Arctic scallops under projected ocean warming and acidification indicating that scallops are susceptible to future climate change. The observed reduction in muscular PLArest of scallops coping with a warmer and acidified ocean may be linked to an enhanced energy demand and reduced oxygen partial pressures (PO2) in their body fluids. Delayed recovery from moderate swimming at elevated temperature is a result of reduced PLArest concentrations associated with a warm-induced reduction of a residual aerobic power budget

    Heat hardening enhances metabolite-driven thermoprotection in the Mediterranean mussel Mytilus galloprovincialis

    Get PDF
    Introduction: Temperature affects organisms’ metabolism and ecological performance. Owing to climate change, sea warming constituting a severe source of environmental stress for marine organisms, since it increases at alarming rates. Rapid warming can exceed resilience of marine organisms leading to fitness loss and mortality. However, organisms can improve their thermal tolerance when briefly exposed to sublethal thermal stress (heat hardening), thus generating heat tolerant phenotypes.Methods: We investigated the “stress memory” effect caused by heat hardening on M. galloprovincialis metabolite profile of in order to identify the underlying biochemical mechanisms, which enhance mussels’ thermal tolerance.Results: The heat hardening led to accumulation of amino acids (e.g., leucine, isoleucine and valine), including osmolytes and cytoprotective agents with antioxidant and anti-inflammatory properties that can contribute to thermal protection of the mussels. Moreover, proteolysis was inhibited and protein turnover regulated by the heat hardening. Heat stress alters the metabolic profile of heat stressed mussels, benefiting the heat-hardened individuals in increasing their heat tolerance compared to the non-heat-hardened ones.Discussion: These findings provide new insights in the metabolic mechanisms that may reinforce mussels’ tolerance against thermal stress providing both natural protection and potential manipulative tools (e.g., in aquaculture) against the devastating climate change effects on marine organisms

    Rassenschande, genocide and the reproductive Jewish body: examining the use of rape and sexualized violence against Jewish women during the Holocaust

    Get PDF
    Rape and sexual violence against Jewish women is a relatively unexplored area of investigation. This article adds to the scant literature on this topic. It asks: how and why did women's reproductive bodies (gender), combined with their status as Jews (race), make them particularly vulnerable during the Holocaust? The law against Rassenschande (racial defilement) prohibited sexual relations between Aryans and non-Aryans. Yet, Jewish women were raped by German men. Providing a more nuanced account than is provided by the dehumanization thesis, this article argues that women were targeted precisely because of their Jewishness and their reproductive capabilities. In addition, this piece proposes that the genocidal attack on women's bodies in the form of rape (subsequently leading to the murder of impregnated women) and sexualized violence (forced abortions and forced sterilizations) must be interpreted as an attack on an essentialized group: woman-as-Jew

    Leisure, refuge and solidarity:messages in visitors’ books as microforms of travel writing

    Get PDF
    Visitors’ books not only trace developments in modern tourism, but they also reveal changes in the socio-cultural and language attitudes of travellers from all walks of life over prolonged periods of time. This article investigates messages in visitors’ books from Wales from the mid-nineteenth century up to the present and argues for their recognition as microforms of travel writing. Despite their brevity, entries in visitors’ books are a highly complex form of travel writing particularly in the inscribers’ self-fashioning of identity for future readers. The article examines how writerly choices are not only directly rooted in the discourse of travel, but also in socio-political circumstances in the individual travellers’ countries of origin and their travel destinations
    • 

    corecore