15 research outputs found

    Strategies for Guidance and Electrical and Biological Stimulation in a Neural Regeneration Device

    Full text link
    Tesis por compendio[ES] Actualmente las lesiones del sistema nervioso periférico que conllevan una pérdida de continuidad de los haces axonales suelen implicar secuelas de tipo permanente. Es cierto que en el sistema nervioso periférico existe una cierta regeneración natural de los tractos axonales dañados, pero solamente cuando el espacio entre ambos extremos de la lesión es pequeño, como máximo de 5 mm. Si el espacio es mayor que esta distancia la regeneración no sucede de forma natural y se crea un neuroma traumático. Por tanto, estas lesiones largas requieren de una intervención quirúrgica para puentear la lesión, normalmente con un nervio autógrafo del propio paciente o un nervio alógrafo de un cadáver. No obstante, su uso presenta diversos inconvenientes, como la morbilidad del sitio donante donde puede ocurrir un neuroma, la necesidad de realizar una segunda cirugía, la diferencia de tamaño entre nervio receptor y donante o la necesidad de inmunosupresión en el caso de los nervios alógrafos. Por ello, la ingeniería de tejidos trabaja en el desarrollo de los conductos de guiado nervioso que incorporan estrategias para guiar topográficamente la regeneración, así como células y moléculas bioactivas. La presente tesis doctoral presenta un nuevo conducto de guiado nervioso con una aproximación multimodular para su aplicación en la regeneración de lesiones nerviosas largas (a partir de 15 mm) que hace uso de conductos tubulares huecos modulares de ácido hialurónico (HA) que contienen en su interior una estructura tubular de microfibras de ácido poliláctico (PLA). La estructura fibrilar aporta un guiado topográfico necesario para guiar el crecimiento axonal durante la regeneración a la vez que mantiene unidos los diferentes módulos de HA. Por su parte, los conductos de HA son un hidrogel que evita adherencias con el tejido circundante. A su vez, proporcionan un soporte sobre el que pueden crecer células presembradas. En concreto se ha optado por presembrar células de Schwann, las cuales son unas células gliales de soporte críticas para la regeneración del sistema nervioso periférico. Se ha observado que dichas células son capaces recubrir por completo las paredes internas de los conductos de HA formando una estructura tipo vaina, así como de recubrir las microfibras de PLA creciendo en dirección longitudinal. Los experimentos in vivo en modelo de nervio ciático de conejo han mostrado que la aproximación multimodular mejora significativamente la regeneración nerviosa gracias a proporcionar una mejor neovascularización. A su vez, gracias a las células de Schwann presembradas se ha logrado una mejora adicional de la regeneración nerviosa gracias a su efecto favorecedor del crecimiento axonal. Además, se han estudiado diferentes mejoras aplicables al conducto de guiado nervioso con el objetivo de mejorar los resultados obtenidos in vivo. Gracias a la incorporación de fibroína de seda a los conductos de HA se ha logrado mejorar sus propiedades mecánicas y biológicas. Asimismo, también se ha desarrollado un sustrato electroconductor de microfibras de PLA recubiertas con el polímero electroconductor Polipirrol gracias al cual se ha observado in vitro que es capaz de mejorar el crecimiento axonal al aplicar una estimulación eléctrica. Además, mediante un sistema de modificación génica de las células de Schwann por electrotransfección se ha logrado aumentar su secreción del factor neurotrófico derivado del cerebro (BDNF), gracias a lo cual se ha observado que se incrementa la velocidad de crecimiento axonal in vitro.[CA] Actualment les lesions del sistema nerviós perifèric que comporten una pèrdua de continuïtat dels feixos axonals solen implicar seqüeles de tipus permanent. És cert que al sistema nerviós perifèric hi ha una certa regeneració natural dels tractes axonals danyats, però només quan l'espai entre ambdós extrems de la lesió és petit, com a màxim de 5 mm. Si l'espai és més gran que aquesta distància la regeneració no succeeix de manera natural i es crea un neuroma traumàtic. Per tant, aquestes lesions llargues requereixen una intervenció quirúrgica per pontejar la lesió, normalment amb un nervi autògraf del pacient o un nervi al·lògraf d'un cadàver. No obstant això, el seu ús presenta diversos inconvenients, com la morbilitat del lloc donant on pot ocórrer un neuroma, la necessitat de fer una segona cirurgia, la diferència de mida entre nervi receptor i donant o la necessitat d'immunosupressió en el cas dels nervis al·lògrafs . Per això, l'enginyeria de teixits treballa en el desenvolupament dels conductes de guiatge nerviós que incorporen estratègies per guiar topogràficament la regeneració, així com cèl·lules i molècules bioactives. Aquesta tesi doctoral presenta un nou conducte de guiatge nerviós amb una aproximació multimodular per a la seva aplicació en la regeneració de lesions nervioses llargues (a partir de 15 mm) que fa ús de conductes tubulars buits modulars d'àcid hialurònic (HA) que contenen al seu interior una estructura tubular de microfibres d'àcid polilàctic (PLA). L'estructura fibril·lar aporta un guiatge topogràfic necessari per guiar el creixement axonal durant la regeneració alhora que manté units els diferents mòduls d'HA. Per part seva, els conductes d'HA són un hidrogel que evita adherències amb el teixit circumdant. Alhora, proporcionen un suport sobre el qual poden créixer cèl·lules presembrades. En concret s'ha optat per presembrar cèl·lules de Schwann, les quals són unes cèl·lules glials de suport crítiques per a la regeneració del sistema nerviós perifèric. S'ha observat que aquestes cèl·lules són capaces de recobrir completament les parets internes dels conductes d'HA formant una estructura tipus beina, així com de recobrir les microfibres de PLA creixent en direcció longitudinal. Els experiments in vivo en model de nervi ciàtic de conill han mostrat que l'aproximació multimodular millora significativament la regeneració nerviosa gràcies a proporcionar una millor neovascularització. Alhora, gràcies a les cèl·lules de Schwann presembrades s'ha aconseguit una millora addicional de la regeneració nerviosa gràcies al seu efecte afavoridor del creixement axonal. A més, s'han estudiat diferents millores aplicables al conducte de guiatge nerviós per tal de millorar els resultats obtinguts in vivo. Gràcies a la incorporació de fibroïna de seda als conductes d'HA s'ha aconseguit millorar les seues propietats mecàniques i biològiques. També s'ha desenvolupat un substrat electroconductor de microfibres de PLA recobertes amb el polímer electroconductor Polipirrol gràcies al qual s'ha observat in vitro que és capaç de millorar el creixement axonal quan s'aplica una estimulació elèctrica. A més, mitjançant un sistema de modificació gènica de les cèl·lules de Schwann per electrotransfecció s'ha aconseguit augmentar la secreció del factor neurotròfic derivat del cervell (BDNF), gràcies a la qual cosa s'ha observat que s'incrementa la velocitat de creixement axonal in vitro.[EN] Currently, lesions of the peripheral nervous system that lead to a loss of continuity of the axonal bundles usually involve permanent sequelae. It is true that in the peripheral nervous system there is some natural regeneration of damaged axonal tracts, but only when the space between the two ends of the lesion is small, at most 5 mm. If the gap is greater than this distance, regeneration does not occur naturally, and a traumatic neuroma is created. Therefore, these long injuries require surgical intervention to bridge the injury, usually with an autograph nerve from the patient or an allograph nerve from a cadaver. However, its use has various drawbacks, such as the morbidity of the donor site where a neuroma can occur, the need to perform a second surgery, the difference in size between the recipient and donor nerves, or the need for immunosuppression in the case of allograft nerves. For this reason, tissue engineering works on the development of nerve guidance conduits that incorporate strategies to topographically guide the regeneration, as well as cells and bioactive molecules. This doctoral thesis presents a new nerve guidance conduit with a multimodular approach for its application in the regeneration of long nerve lesions (from 15 mm) that makes use of modular hollow tubular conduits of hyaluronic acid (HA) that contain in their inside a tubular structure of microfibers of polylactic acid (PLA). The fibrillar structure provides the necessary topographic guidance to guide axonal growth during regeneration while keeping the different HA modules together. For their part, the HA conduits are a hydrogel that prevents adhesions with the surrounding tissue. In turn, they provide a support on which preseeded cells can grow. Specifically, it has been decided to pre-seed Schwann cells, which are glial support cells that are critical for the regeneration of the peripheral nervous system. It has been observed that these cells are capable of completely covering the inner walls of the HA conduits, forming a sheath-like structure, as well as covering the PLA microfibers by growing in a longitudinal direction. In vivo experiments in a rabbit sciatic nerve model have shown that the multimodular approach significantly improves nerve regeneration by providing better neovascularization. In turn, thanks to the pre-seeded Schwann cells, an additional improvement in nerve regeneration has been achieved thanks to its promoting effect on axonal growth. In addition, different improvements applicable to the nerve guidance conduit have been studied with the aim of improving the results obtained in vivo. Thanks to the incorporation of silk fibroin into HA conduits, their mechanical and biological properties have been improved. Likewise, an electroconductive substrate of PLA microfibers coated with the electroconductive polymer Polypyrrole has also been developed, thanks to which it has been observed in vitro that it is capable of improving axonal growth by applying electrical stimulation. In addition, by means of a gene modification system of Schwann cells by electrotransfection, it has been possible to increase their secretion of brain-derived neurotrophic factor (BDNF), thanks to which it has been observed that the speed of axonal growth is increased in vitro.Agradezco la ayuda de los diferentes proyectos del Ministerio de Economía y Competitividad del Gobierno de España que han hecho posible la financiación de esta tesis doctoral: MAT2015-66666-C3-1-R, DPI2015-72863-EXP, AEI RTI2018-095872-B-C21-C22/ERDF y FPU16/01833 del Ministerio de Universidades del Gobierno de España, sin la cual no hubiera podido realizar esta tesis doctoral.Gisbert Roca, F. (2022). Strategies for Guidance and Electrical and Biological Stimulation in a Neural Regeneration Device [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/189937Compendi

    Modelado del efecto eléctrico de los fármacos voltaje-dependientes en las células ventriculares de corazón: nuevo marco teórico

    Full text link
    [ES] El primer objetivo del programa es aplicar un nuevo modelo de estimación del factor de bloqueo de una corriente iónica que se ha desarrollado para tener en cuenta su dependencia con el voltaje en el caso del uso de un fármaco voltaje-dependiente. Este nuevo modelo busca, por un lado, mejorar el método convencional que no tiene en cuenta la dependencia del factor de bloqueo con el voltaje, y, por otro, presentar un coste computacional menor que el de los modelos de Markov. El segundo objetivo del programa es aplicar esta nueva estimación del factor de bloqueo a un modelo de simulación de la actividad eléctrica de una célula excitable para así mejorar la aproximación del efecto que tiene el uso de un fármaco voltaje-dependiente dado sobre el comportamiento eléctrico de dicha célula. Así, este nuevo programa informático pretende ser una nueva herramienta que ofrecer a las empresas farmacéuticas para mejorar el estudio del efecto de nuevos fármacos voltaje-dependientes sobre la actividad eléctrica de las células que presenten canales iónicos alterados por el fármaco y así aumentar la fiabilidad de las simulaciones computacionales previas al ensayo clínico.[CA] El primer objectiu del programa es aplicar un nou model d’estimació del factor de bloqueig d’una corrent iònica que s’ha desenvolupat per tindre en compte la seua dependència amb el voltatge en el cas d’utilitzar un fàrmac voltatge-dependent. Aquest nou model busca, per un costat, millorar el mètode convencional que no té en compte la dependència del factor de bloqueig amb el voltatge i, per altre, presentar un cost computacional menor que el dels models de Markov. El segon objectiu del programa es aplicar aquesta nova estimació del factor de bloqueig a un model de simulació de l’activitat elèctrica d’una cèl·lula excitable per millorar l’aproximació de l’efecte que té l’ús d’un fàrmac voltatge-dependent donat sobre el comportament elèctric de dita cèl·lula. Així, aquest nou programa informàtic pretén ser una nova ferramenta que oferir a les empreses farmacèutiques per millorar l’estudi de l’efecte de nous fàrmacs voltatgedependents sobre l’activitat elèctrica de les cèl·lules que presenten canals iònics alterats pel fàrmac i així augmentar la fiabilitat de les simulacions computacionals prèvies a l’assaig clínic.[EN] The first goal of the software is to apply the new estimation model of the blocking factor of an ionic current that has been developed in order to consider its voltage dependency when using a voltage-dependent drug. On the one hand, this model seeks to improve the conventional method that disregards the voltage-dependency of the blocking factor and, on the other hand, to present a lower computational cost than the Markov models. The second aim of the software is to apply this new estimation of the blocking factor to an electrical activity simulation model of an excitable cell in order to improve the approach of the effect that a given voltage-dependent drug has on the electrical behaviour of the cell. Thus, this new software intends to be a new tool to offer to pharmaceutics companies in order to improve the study of the effect that new voltage-dependent drugs have on the electrical activity of the cells with ionic channels disturbed by the drug and thereby increase the reliability of the computational simulations previous to the clinical trials.Gisbert Roca, F. (2016). Modelado del efecto eléctrico de los fármacos voltaje-dependientes en las células ventriculares de corazón: nuevo marco teórico. http://hdl.handle.net/10251/67468.TFG

    Axonal extension from dorsal root ganglia on fibrillar and highly aligned poly(lactic acid)-polypyrrole substrates obtained by two different techniques: Electrospun nanofibres and extruded microfibres

    Get PDF
    [EN] The biological behaviour of Schwann cells (SCs) and dorsal root ganglia (DRG) on fibrillar, highly aligned and electroconductive substrates obtained by two different techniques is studied. Mats formed by nanometer-sized fibres of poly(lactic acid) (PLA) are obtained by the electrospinning technique, while bundles formed by micrometer-sized extruded PLA fibres are obtained by grouping microfibres together. Both types of substrates are coated with the electrically conductive polymer polypyrrole (PPy) and their morphological, physical and electrical characterization is carried out. SCs on micrometer-sized substrates show a higher motility and cell-cell interaction, while a higher cell-material interaction with a lower cell motility is observed for nanometer-sized substrates. This higher motility and cell-cell interaction of SCs on the micrometer-sized substrates entails a higher axonal growth from DRG, since the migration of SCs from the DRG body is accelerated and, therefore, the SCs tapestry needed for the axonal growth is formed earlier on the substrate. A higher length and area of the axons is observed for these micrometer-sized substrates, as well as a higher level of axonal sprouting when compared with the nanometer-sized ones. These substrates offer the possibility of being electrically stimulated in different tissue engineering applications of the nervous system.The authors acknowledge financing from the Spanish Government's State Research Agency (AEI) through projects DPI2015-72863-EXP and RTI2018-095872-B-C22/ERDF. FGR acknowledges scholarship FPU16/01833 of the Spanish Ministry of Universities. We thank the Electron Microscopy Service at the UPV, where the FESEM images were obtainedGisbert-Roca, F.; Más Estellés, J.; Monleón Pradas, M.; Martínez-Ramos, C. (2020). Axonal extension from dorsal root ganglia on fibrillar and highly aligned poly(lactic acid)-polypyrrole substrates obtained by two different techniques: Electrospun nanofibres and extruded microfibres. International Journal of Biological Macromolecules. 163:1959-1969. https://doi.org/10.1016/j.ijbiomac.2020.09.181S19591969163Houschyar, K. S., Momeni, A., Pyles, M. N., Cha, J. Y., Maan, Z. N., Duscher, D., … Schoonhoven, J. van. (2016). The Role of Current Techniques and Concepts in Peripheral Nerve Repair. Plastic Surgery International, 2016, 1-8. doi:10.1155/2016/4175293Daly, W., Yao, L., Zeugolis, D., Windebank, A., & Pandit, A. (2011). A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. Journal of The Royal Society Interface, 9(67), 202-221. doi:10.1098/rsif.2011.0438De Ruiter, G. C. W., Malessy, M. J. A., Yaszemski, M. J., Windebank, A. J., & Spinner, R. J. (2009). Designing ideal conduits for peripheral nerve repair. Neurosurgical Focus, 26(2), E5. doi:10.3171/foc.2009.26.2.e5Tang-Schomer, M. D. (2018). 3D axon growth by exogenous electrical stimulus and soluble factors. Brain Research, 1678, 288-296. doi:10.1016/j.brainres.2017.10.032Sarker, M. D., Naghieh, S., McInnes, A. D., Schreyer, D. J., & Chen, X. (2018). Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Progress in Neurobiology, 171, 125-150. doi:10.1016/j.pneurobio.2018.07.002Kim, I. A., Park, S. A., Kim, Y. J., Kim, S.-H., Shin, H. J., Lee, Y. J., … Shin, J.-W. (2006). Effects of mechanical stimuli and microfiber-based substrate on neurite outgrowth and guidance. Journal of Bioscience and Bioengineering, 101(2), 120-126. doi:10.1263/jbb.101.120English, A. W., Schwartz, G., Meador, W., Sabatier, M. J., & Mulligan, A. (2007). Electrical stimulation promotes peripheral axon regeneration by enhanced neuronal neurotrophin signaling. Developmental Neurobiology, 67(2), 158-172. doi:10.1002/dneu.20339Schmidt, C. E., Shastri, V. R., Vacanti, J. P., & Langer, R. (1997). Stimulation of neurite outgrowth using an electrically conducting polymer. Proceedings of the National Academy of Sciences, 94(17), 8948-8953. doi:10.1073/pnas.94.17.8948Amani, H., Arzaghi, H., Bayandori, M., Dezfuli, A. S., Pazoki‐Toroudi, H., Shafiee, A., & Moradi, L. (2019). Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques. Advanced Materials Interfaces, 6(13), 1900572. doi:10.1002/admi.201900572Zhu, W., Masood, F., O’Brien, J., & Zhang, L. G. (2015). Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration. Nanomedicine: Nanotechnology, Biology and Medicine, 11(3), 693-704. doi:10.1016/j.nano.2014.12.001Lee, Y.-S., Collins, G., & Livingston Arinzeh, T. (2011). Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomaterialia, 7(11), 3877-3886. doi:10.1016/j.actbio.2011.07.013Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325-4335. doi:10.1016/j.biomaterials.2009.04.042Zou, Y., Qin, J., Huang, Z., Yin, G., Pu, X., & He, D. (2016). Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites. ACS Applied Materials & Interfaces, 8(20), 12576-12582. doi:10.1021/acsami.6b00957Xu, Y., Huang, Z., Pu, X., Yin, G., & Zhang, J. (2019). Fabrication of Chitosan/Polypyrrole‐coated poly(L‐lactic acid)/Polycaprolactone aligned fibre films for enhancement of neural cell compatibility and neurite growth. Cell Proliferation, 52(3), e12588. doi:10.1111/cpr.12588Wang, H. B., Mullins, M. E., Cregg, J. M., McCarthy, C. W., & Gilbert, R. J. (2010). Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomaterialia, 6(8), 2970-2978. doi:10.1016/j.actbio.2010.02.020Christopherson, G. T., Song, H., & Mao, H.-Q. (2009). The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials, 30(4), 556-564. doi:10.1016/j.biomaterials.2008.10.004Gnavi, S., Fornasari, B. E., Tonda-Turo, C., Ciardelli, G., Zanetti, M., Geuna, S., & Perroteau, I. (2015). The influence of electrospun fibre size on Schwann cell behaviour and axonal outgrowth. Materials Science and Engineering: C, 48, 620-631. doi:10.1016/j.msec.2014.12.055Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325-347. doi:10.1016/j.biotechadv.2010.01.004Agarwal, S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49(26), 5603-5621. doi:10.1016/j.polymer.2008.09.014Markus, A., Patel, T. D., & Snider, W. D. (2002). Neurotrophic factors and axonal growth. Current Opinion in Neurobiology, 12(5), 523-531. doi:10.1016/s0959-4388(02)00372-0Lu, P., & Tuszynski, M. H. (2008). Growth factors and combinatorial therapies for CNS regeneration. Experimental Neurology, 209(2), 313-320. doi:10.1016/j.expneurol.2007.08.004Lykissas, M., Batistatou, A., Charalabopoulos, K., & Beris, A. (2007). The Role of Neurotrophins in Axonal Growth, Guidance, and Regeneration. Current Neurovascular Research, 4(2), 143-151. doi:10.2174/156720207780637216Bregman, B. S., McAtee, M., Dai, H. N., & Kuhn, P. L. (1997). Neurotrophic Factors Increase Axonal Growth after Spinal Cord Injury and Transplantation in the Adult Rat. Experimental Neurology, 148(2), 475-494. doi:10.1006/exnr.1997.6705Freeman, M. R. (2006). Sculpting the nervous system: glial control of neuronal development. Current Opinion in Neurobiology, 16(1), 119-125. doi:10.1016/j.conb.2005.12.004Pompili, E., Ciraci, V., Leone, S., De Franchis, V., Familiari, P., Matassa, R., … Fabrizi, C. (2020). Thrombin regulates the ability of Schwann cells to support neuritogenesis and to maintain the integrity of the nodes of Ranvier. European Journal of Histochemistry, 64(2). doi:10.4081/ejh.2020.3109El Seblani, N., Welleford, A. S., Quintero, J. E., van Horne, C. G., & Gerhardt, G. A. (2020). Invited review: Utilizing peripheral nerve regenerative elements to repair damage in the CNS. Journal of Neuroscience Methods, 335, 108623. doi:10.1016/j.jneumeth.2020.108623Jessen, K. R., & Arthur-Farraj, P. (2019). Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia, 67(3), 421-437. doi:10.1002/glia.23532Jessen, K. R., Mirsky, R., & Lloyd, A. C. (2015). Schwann Cells: Development and Role in Nerve Repair. Cold Spring Harbor Perspectives in Biology, 7(7), a020487. doi:10.1101/cshperspect.a020487Gomez-Sanchez, J. A., Pilch, K. S., van der Lans, M., Fazal, S. V., Benito, C., Wagstaff, L. J., … Jessen, K. R. (2017). After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination. The Journal of Neuroscience, 37(37), 9086-9099. doi:10.1523/jneurosci.1453-17.2017Wang, L.-X., Li, X.-G., & Yang, Y.-L. (2001). Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers, 47(2), 125-139. doi:10.1016/s1381-5148(00)00079-1Le, T.-H., Kim, Y., & Yoon, H. (2017). Electrical and Electrochemical Properties of Conducting Polymers. Polymers, 9(12), 150. doi:10.3390/polym9040150Mattioli-Belmonte, M., Gabbanelli, F., Marcaccio, M., Giantomassi, F., Tarsi, R., Natali, D., … Biagini, G. (2005). Bio-characterisation of tosylate-doped polypyrrole films for biomedical applications. Materials Science and Engineering: C, 25(1), 43-49. doi:10.1016/j.msec.2004.04.002Sabouraud, G., Sadki, S., & Brodie, N. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29(5), 283-293. doi:10.1039/a807124aLi, C., Bai, H., & Shi, G. (2009). Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 38(8), 2397. doi:10.1039/b816681cAznar-Cervantes, S., Roca, M. I., Martinez, J. G., Meseguer-Olmo, L., Cenis, J. L., Moraleda, J. M., & Otero, T. F. (2012). Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry, 85, 36-43. doi:10.1016/j.bioelechem.2011.11.008Sun, X., Peng, J., Zhou, J., Wang, Y., Cheng, L., & Wu, Z. (2016). Preparation of polypyrrole-embedded electrospun poly(lactic acid) nanofibrous scaffolds for nerve tissue engineering. Neural Regeneration Research, 11(10), 1644. doi:10.4103/1673-5374.193245George, P. M., Lyckman, A. W., LaVan, D. A., Hegde, A., Leung, Y., Avasare, R., … Sur, M. (2005). Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials, 26(17), 3511-3519. doi:10.1016/j.biomaterials.2004.09.037Lunt, J. (1998). Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 59(1-3), 145-152. doi:10.1016/s0141-3910(97)00148-1Ramot, Y., Haim-Zada, M., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced Drug Delivery Reviews, 107, 153-162. doi:10.1016/j.addr.2016.03.012Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340, 9-14. doi:10.1016/j.cej.2018.01.010Wan, Y., & Wen, D. (2005). Preparation and characterization of porous conducting poly(dl-lactide) composite membranes. Journal of Membrane Science, 246(2), 193-201. doi:10.1016/j.memsci.2004.07.032Shi, G., Rouabhia, M., Wang, Z., Dao, L. H., & Zhang, Z. (2004). A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide. Biomaterials, 25(13), 2477-2488. doi:10.1016/j.biomaterials.2003.09.032Wang, Z., Roberge, C., Dao, L. H., Wan, Y., Shi, G., Rouabhia, M., … Zhang, Z. (2004). In vivo evaluation of a novel electrically conductive polypyrrole/poly(D,L-lactide) composite and polypyrrole-coated poly(D,L-lactide-co-glycolide) membranes. Journal of Biomedical Materials Research, 70A(1), 28-38. doi:10.1002/jbm.a.30047Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002Lam, C. X. F., Hutmacher, D. W., Schantz, J.-T., Woodruff, M. A., & Teoh, S. H. (2009). Evaluation of polycaprolactone scaffold degradation for 6 monthsin vitroandin vivo. Journal of Biomedical Materials Research Part A, 90A(3), 906-919. doi:10.1002/jbm.a.32052Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019Callens, S. J. P., Uyttendaele, R. J. C., Fratila-Apachitei, L. E., & Zadpoor, A. A. (2020). Substrate curvature as a cue to guide spatiotemporal cell and tissue organization. Biomaterials, 232, 119739. doi:10.1016/j.biomaterials.2019.119739Rolli, C. G., Nakayama, H., Yamaguchi, K., Spatz, J. P., Kemkemer, R., & Nakanishi, J. (2012). Switchable adhesive substrates: Revealing geometry dependence in collective cell behavior. Biomaterials, 33(8), 2409-2418. doi:10.1016/j.biomaterials.2011.12.012Doxzen, K., Vedula, S. R. K., Leong, M. C., Hirata, H., Gov, N. S., Kabla, A. J., … Lim, C. T. (2013). Guidance of collective cell migration by substrate geometry. Integrative Biology, 5(8), 1026. doi:10.1039/c3ib40054aKim, Y., Haftel, V. K., Kumar, S., & Bellamkonda, R. V. (2008). The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials, 29(21), 3117-3127. doi:10.1016/j.biomaterials.2008.03.042Schnell, E., Klinkhammer, K., Balzer, S., Brook, G., Klee, D., Dalton, P., & Mey, J. (2007). Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials, 28(19), 3012-3025. doi:10.1016/j.biomaterials.2007.03.00

    Electrical Stimulation Increases Axonal Growth from Dorsal Root Ganglia Co-Cultured with Schwann Cells in Highly Aligned PLA-PPy-Au Microfiber Substrates

    Get PDF
    [EN] Nerve regeneration is a slow process that needs to be guided for distances greater than 5 mm. For this reason, different strategies are being studied to guide axonal growth and accelerate the axonal growth rate. In this study, we employ an electroconductive fibrillar substrate that is able to topographically guide axonal growth while accelerating the axonal growth rate when subjected to an exogenous electric field. Dorsal root ganglia were seeded in co-culture with Schwann cells on a substrate of polylactic acid microfibers coated with the electroconductive polymer polypyrrole, adding gold microfibers to increase its electrical conductivity. The substrate is capable of guiding axonal growth in a highly aligned manner and, when subjected to an electrical stimulation, an improvement in axonal growth is observed. As a result, an increase in the maximum length of the axons of 19.2% and an increase in the area occupied by the axons of 40% were obtained. In addition, an upregulation of the genes related to axon guidance, axogenesis, Schwann cells, proliferation and neurotrophins was observed for the electrically stimulated group. Therefore, our device is a good candidate for nerve regeneration therapies.This research was funded by the Spanish Government's State Research Agency (AEI) through project RTI2018-095872-B-C22/ERDF and by RISEUP project FetOpen in H2020 Program: RISEUP 964562 H2020 FetOpen program.Gisbert Roca, F.; Serrano Requena, S.; Monleón Pradas, M.; Martínez-Ramos, C. (2022). Electrical Stimulation Increases Axonal Growth from Dorsal Root Ganglia Co-Cultured with Schwann Cells in Highly Aligned PLA-PPy-Au Microfiber Substrates. International Journal of Molecular Sciences. 23:1-22. https://doi.org/10.3390/ijms231263621222

    Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole

    Full text link
    This is the peer reviewed version of the following article: Gisbert, F., García-Bernabé, A., Compañ, V., Martínez-Ramos, C., Monleón, M., Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole. Macromol. Mater. Eng. 2021, 306, 2000584, which has been published in final form at https://doi.org/10.1002/mame.202000584. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] The production of electroconductive nanofiber membranes made from polylactic acid (PLA) coated with polypyrrole (PPy) is investigated, performing a scanning of different reaction parameters and studying their physicochemical and dielectric properties. Depending on PPy content, a transition between conduction mechanisms is observed, with a temperature-dependent relaxation process for samples without PPy, a temperature-independent conduction process for samples with high contents of PPy and a combination of both processes for samples with low contents of PPy. A homogeneous and continuous coating is achieved from 23 wt% PPy, observing a percolation effect around 27 wt% PPy. Higher wt% PPy allow to obtain higher conductivities, but PPy aggregates appear from 34% wt% PPy. The high conductivity values obtained for electrospun membranes both through-plane and in-plane (above 0.05 and 0.20 S cm¿1, respectively, at room temperature) for the highest wt% of PPy, their porous structure with high specific surface area and their thermal stability below 140 °C make them candidates for many potential applications as solid polymer electrolytes in, for example, batteries, supercapacitors, sensors, photosensors, or polymer electrolyte membrane fuel cells (PEMFCs). In addition, the biocompatibility of PLA-PPy membranes expand their potential applications also in the field of tissue engineering and implantable devices.The authors acknowledge financing from the Spanish Government's State Research Agency (AEI) through projects DPI2015-72863-EXP and RTI2018-095872-B-C22/ERDF. FGR acknowledges the scholarship FPU16/01833 of the Spanish Ministry of Universities. The authors thank the Electron Microscopy Service at the UPV, where the FESEM images were obtained.Gisbert-Roca, F.; Garcia-Bernabe, A.; Compañ Moreno, V.; Martínez-Ramos, C.; Monleón Pradas, M. (2021). Solid Polymer Electrolytes Based on Polylactic Acid Nanofiber Mats Coated with Polypyrrole. Macromolecular Materials and Engineering. 306(2):1-14. https://doi.org/10.1002/mame.202000584S1143062McNeill, R., Siudak, R., Wardlaw, J., & Weiss, D. (1963). Electronic Conduction in Polymers. I. The Chemical Structure of Polypyrrole. Australian Journal of Chemistry, 16(6), 1056. doi:10.1071/ch9631056Bolto, B., & Weiss, D. (1963). Electronic Conduction in Polymers. II. The Electrochemical Reduction of Polypyrrole at Controlled Potential. Australian Journal of Chemistry, 16(6), 1076. doi:10.1071/ch9631076Bolto, B., McNeill, R., & Weiss, D. (1963). Electronic Conduction in Polymers. III. Electronic Properties of Polypyrrole. Australian Journal of Chemistry, 16(6), 1090. doi:10.1071/ch9631090McNeill, R., Weiss, D., & Willis, D. (1965). Electronic conduction in polymers. IV. Polymers from imidazole and pyridine. Australian Journal of Chemistry, 18(4), 477. doi:10.1071/ch9650477Bolto, B., Weiss, D., & Willis, D. (1965). Electronic conduction in polymers. V. Aromatic semiconducting polymers. Australian Journal of Chemistry, 18(4), 487. doi:10.1071/ch9650487Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x. Journal of the Chemical Society, Chemical Communications, (16), 578. doi:10.1039/c39770000578Hammache, H., Makhloufi, L., & Saidani, B. (2003). Corrosion protection of iron by polypyrrole modified by copper using the cementation process. Corrosion Science, 45(9), 2031-2042. doi:10.1016/s0010-938x(03)00043-xMattioli-Belmonte, M., Gabbanelli, F., Marcaccio, M., Giantomassi, F., Tarsi, R., Natali, D., … Biagini, G. (2005). Bio-characterisation of tosylate-doped polypyrrole films for biomedical applications. Materials Science and Engineering: C, 25(1), 43-49. doi:10.1016/j.msec.2004.04.002CAREEM, M. (2004). Dependence of force produced by polypyrrole-based artificial muscles on ionic species involved. Solid State Ionics, 175(1-4), 725-728. doi:10.1016/j.ssi.2004.01.080Ge, D., Tian, X., Qi, R., Huang, S., Mu, J., Hong, S., … Shi, W. (2009). A polypyrrole-based microchip for controlled drug release. Electrochimica Acta, 55(1), 271-275. doi:10.1016/j.electacta.2009.08.049Sharma, R. K., Rastogi, A. C., & Desu, S. B. (2008). Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochemistry Communications, 10(2), 268-272. doi:10.1016/j.elecom.2007.12.004Rubio Retama, J., López Cabarcos, E., Mecerreyes, D., & López-Ruiz, B. (2004). Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase. Biosensors and Bioelectronics, 20(6), 1111-1117. doi:10.1016/j.bios.2004.05.018Wang, L.-X., Li, X.-G., & Yang, Y.-L. (2001). Preparation, properties and applications of polypyrroles. Reactive and Functional Polymers, 47(2), 125-139. doi:10.1016/s1381-5148(00)00079-1Sabouraud, G., Sadki, S., & Brodie, N. (2000). The mechanisms of pyrrole electropolymerization. Chemical Society Reviews, 29(5), 283-293. doi:10.1039/a807124aLi, C., Bai, H., & Shi, G. (2009). Conducting polymer nanomaterials: electrosynthesis and applications. Chemical Society Reviews, 38(8), 2397. doi:10.1039/b816681cBrahim, S. I., Maharajh, D., Narinesingh, D., & Guiseppi-Elie, A. (2002). DESIGN AND CHARACTERIZATION OF A GALACTOSE BIOSENSOR USING A NOVEL POLYPYRROLE-HYDROGEL COMPOSITE MEMBRANE. Analytical Letters, 35(5), 797-812. doi:10.1081/al-120004070Jun, H.-K., Hoh, Y.-S., Lee, B.-S., Lee, S.-T., Lim, J.-O., Lee, D.-D., & Huh, J.-S. (2003). Electrical properties of polypyrrole gas sensors fabricated under various pretreatment conditions. Sensors and Actuators B: Chemical, 96(3), 576-581. doi:10.1016/j.snb.2003.06.002Kisiel, A., Mazur, M., Kuśnieruk, S., Kijewska, K., Krysiński, P., & Michalska, A. (2010). Polypyrrole microcapsules as a transducer for ion-selective electrodes. Electrochemistry Communications, 12(11), 1568-1571. doi:10.1016/j.elecom.2010.08.035Yamamoto, H., Fukuda, M., Isa, I., & Yoshino, K. (1993). Tantalum electrolytic capacitor employing polypyrrole as solid electrolyte. Electronics and Communications in Japan (Part II: Electronics), 76(6), 88-98. doi:10.1002/ecjb.4420760610Yamamoto, H., Oshima, M., Fukuda, M., Isa, I., & Yoshino, K. (1996). Characteristics of aluminium solid electrolytic capacitors using a conducting polymer. Journal of Power Sources, 60(2), 173-177. doi:10.1016/s0378-7753(96)80007-3Sultana, I., Rahman, M. M., Wang, J., Wang, C., Wallace, G. G., & Liu, H.-K. (2012). All-polymer battery system based on polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) and polypyrrole (PPy)/indigo carmine (IC) free standing films. Electrochimica Acta, 83, 209-215. doi:10.1016/j.electacta.2012.08.043Xia, J., Chen, L., & Yanagida, S. (2011). Application of polypyrrole as a counter electrode for a dye-sensitized solar cell. Journal of Materials Chemistry, 21(12), 4644. doi:10.1039/c0jm04116eAlmuntaser, F. M. A., Majumder, S., Baviskar, P. K., Sali, J. V., & Sankapal, B. R. (2017). Synthesis and characterization of polypyrrole and its application for solar cell. Applied Physics A, 123(8). doi:10.1007/s00339-017-1131-yHao, D., Xu, B., & Cai, Z. (2018). Polypyrrole coated knitted fabric for robust wearable sensor and heater. Journal of Materials Science: Materials in Electronics, 29(11), 9218-9226. doi:10.1007/s10854-018-8950-2Lima, R. M. A. P., Alcaraz-Espinoza, J. J., da Silva, F. A. G., & de Oliveira, H. P. (2018). Multifunctional Wearable Electronic Textiles Using Cotton Fibers with Polypyrrole and Carbon Nanotubes. ACS Applied Materials & Interfaces, 10(16), 13783-13795. doi:10.1021/acsami.8b04695Lee, C. Y., Lee, D. E., Jeong, C. K., Hong, Y. K., Shim, J. H., Joo, J., … Yang, H. G. (2002). Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polymers for Advanced Technologies, 13(8), 577-583. doi:10.1002/pat.227Håkansson, E., Amiet, A., Nahavandi, S., & Kaynak, A. (2007). Electromagnetic interference shielding and radiation absorption in thin polypyrrole films. European Polymer Journal, 43(1), 205-213. doi:10.1016/j.eurpolymj.2006.10.001Zhao, H., Li, L., Yang, J., & Zhang, Y. (2008). Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications. Journal of Power Sources, 184(2), 375-380. doi:10.1016/j.jpowsour.2008.03.024Huang, S.-Y., Ganesan, P., & Popov, B. N. (2009). Development of conducting polypyrrole as corrosion-resistant catalyst support for polymer electrolyte membrane fuel cell (PEMFC) application. Applied Catalysis B: Environmental, 93(1-2), 75-81. doi:10.1016/j.apcatb.2009.09.014Park, H., Kim, Y., Choi, Y. S., Hong, W. H., & Jung, D. (2008). Surface chemistry and physical properties of Nafion/polypyrrole/Pt composite membrane prepared by chemical in situ polymerization for DMFC. Journal of Power Sources, 178(2), 610-619. doi:10.1016/j.jpowsour.2007.08.050Feng, C., Ma, L., Li, F., Mai, H., Lang, X., & Fan, S. (2010). A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosensors and Bioelectronics, 25(6), 1516-1520. doi:10.1016/j.bios.2009.10.009Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325-4335. doi:10.1016/j.biomaterials.2009.04.042Zhou, H., Liu, Z., Liu, X., & Chen, Q. (2016). Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury. Neural Regeneration Research, 11(1), 107. doi:10.4103/1673-5374.175054Aznar-Cervantes, S., Roca, M. I., Martinez, J. G., Meseguer-Olmo, L., Cenis, J. L., Moraleda, J. M., & Otero, T. F. (2012). Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications. Bioelectrochemistry, 85, 36-43. doi:10.1016/j.bioelechem.2011.11.008George, P. M., Lyckman, A. W., LaVan, D. A., Hegde, A., Leung, Y., Avasare, R., … Sur, M. (2005). Fabrication and biocompatibility of polypyrrole implants suitable for neural prosthetics. Biomaterials, 26(17), 3511-3519. doi:10.1016/j.biomaterials.2004.09.037Uyar, T., Toppare, L., & Hacaloglu, J. (2001). PYROLYSIS OF BF4- DOPED POLYPYRROLE BY DIRECT INSERTION PROBE PYROLYSIS MASS SPECTROMETRY. Journal of Macromolecular Science, Part A, 38(11), 1141-1150. doi:10.1081/ma-100107134Zinger, B., Shaier, P., & Zemel, A. (1991). Flexible polypyrrole/ClO4 films formed in aqueous solutions. Synthetic Metals, 40(3), 283-297. doi:10.1016/0379-6779(91)92070-xPeres, R. C. D., Juliano, V. F., De Paoli, M.-A., Panero, S., & Scrosati, B. (1993). Electrochromic properties of dodecyclbenzenesulfonate doped poly(pyrrole). Electrochimica Acta, 38(7), 869-876. doi:10.1016/0013-4686(93)87003-vDe Paoli, M.-A., Peres, R. C. D., Panero, S., & Scrosati, B. (1992). Properties of electrochemically synthesized polymer electrodes—X. Study of polypyrrole/dodecylbenzene sulfonate. Electrochimica Acta, 37(7), 1173-1182. doi:10.1016/0013-4686(92)85053-nLim, H. K., Lee, S. O., Song, K. J., Kim, S. G., & Kim, K. H. (2005). Synthesis and properties of soluble polypyrrole doped with dodecylbenzenesulfonate and combined with polymeric additive poly(ethylene glycol). Journal of Applied Polymer Science, 97(3), 1170-1175. doi:10.1002/app.21824Carragher, U., & Breslin, C. B. (2018). Polypyrrole doped with dodecylbenzene sulfonate as a protective coating for copper. Electrochimica Acta, 291, 362-372. doi:10.1016/j.electacta.2018.08.155Arribas, C., & Rueda, D. (1996). Preparation of conductive polypyrrole-polystyrene sulfonate by chemical polymerization. Synthetic Metals, 79(1), 23-26. doi:10.1016/0379-6779(96)80125-1Wu, T.-M., Chang, H.-L., & Lin, Y.-W. (2009). Synthesis and characterization of conductive polypyrrole with improved conductivity and processability. Polymer International, 58(9), 1065-1070. doi:10.1002/pi.2634Jin, C., Yang, F., & Yang, W. (2006). Electropolymerization and ion exchange properties of a polypyrrole film doped bypara-toluene sulfonate. Journal of Applied Polymer Science, 101(4), 2518-2522. doi:10.1002/app.23775Kaynak, A. (2009). Decay of electrical conductivity in p-toluene sulfonate doped polypyrrole films. Fibers and Polymers, 10(5), 590-593. doi:10.1007/s12221-010-0590-ySamuelson, L. A., & Druy, M. A. (1986). Kinetics of the degradation of electrical conductivity in polypyrrole. Macromolecules, 19(3), 824-828. doi:10.1021/ma00157a057Hou, H., Yu, C., Liu, X., Yao, Y., Liao, Q., Dai, Z., & Li, D. (2018). Waste-loofah-derived carbon micro/nanoparticles for lithium ion battery anode. Surface Innovations, 6(3), 159-166. doi:10.1680/jsuin.17.00068Sultana, I., Rahman, M. M., Li, S., Wang, J., Wang, C., Wallace, G. G., & Liu, H.-K. (2012). Electrodeposited polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) free-standing film for lithium secondary battery application. Electrochimica Acta, 60, 201-205. doi:10.1016/j.electacta.2011.11.037Jérôme, C., Martinot, L., Strivay, D., Weber, G., & Jérôme, R. (2001). Controlled exchange of metallic cations by polypyrrole-based resins. Synthetic Metals, 118(1-3), 45-55. doi:10.1016/s0379-6779(00)00275-7Zhao, H., Price, W. E., Too, C. O., Wallace, G. G., & Zhou, D. (1996). Parameters influencing transport across conducting electroactive polymer membranes. Journal of Membrane Science, 119(2), 199-212. doi:10.1016/0376-7388(96)00130-5Ansari Khalkhali, R., Price, W. ., & Wallace, G. . (2003). Quartz crystal microbalance studies of the effect of solution temperature on the ion-exchange properties of polypyrrole conducting electroactive polymers. Reactive and Functional Polymers, 56(3), 141-146. doi:10.1016/s1381-5148(03)00055-5Pyo, M., Reynolds, J. R., Warren, L. F., & Marcy, H. O. (1994). Long-term redox switching stability of polypyrrole. Synthetic Metals, 68(1), 71-77. doi:10.1016/0379-6779(94)90149-xMurray, P., Spinks, G. M., Wallace, G. G., & Burford, R. P. (1997). In-situ mechanical properties of tosylate doped (pts) polypyrrole. Synthetic Metals, 84(1-3), 847-848. doi:10.1016/s0379-6779(96)04177-xChengyou, J., & Fenglin, Y. (2006). Ion transport and conformational relaxation of a polypyrrole film in aqueous solutions. Sensors and Actuators B: Chemical, 114(2), 737-739. doi:10.1016/j.snb.2005.06.026Li, S., Qiu, Y., & Guo, X. (2009). Influence of doping anions on the ion exchange behavior of polypyrrole. Journal of Applied Polymer Science, 114(4), 2307-2314. doi:10.1002/app.30721Raudsepp, T., Marandi, M., Tamm, T., Sammelselg, V., & Tamm, J. (2014). Influence of ion-exchange on the electrochemical properties of polypyrrole films. Electrochimica Acta, 122, 79-86. doi:10.1016/j.electacta.2013.08.083Syritski, V., Öpik, A., & Forsén, O. (2003). Ion transport investigations of polypyrroles doped with different anions by EQCM and CER techniques. Electrochimica Acta, 48(10), 1409-1417. doi:10.1016/s0013-4686(03)00018-5Fang, Y., Liu, J., Yu, D. J., Wicksted, J. P., Kalkan, K., Topal, C. O., … Li, J. (2010). Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. Journal of Power Sources, 195(2), 674-679. doi:10.1016/j.jpowsour.2009.07.033Qian, T., Yu, C., Zhou, X., Ma, P., Wu, S., Xu, L., & Shen, J. (2014). Ultrasensitive dopamine sensor based on novel molecularly imprinted polypyrrole coated carbon nanotubes. Biosensors and Bioelectronics, 58, 237-241. doi:10.1016/j.bios.2014.02.081Zhang, J., & Zhao, X. S. (2012). Conducting Polymers Directly Coated on Reduced Graphene Oxide Sheets as High-Performance Supercapacitor Electrodes. The Journal of Physical Chemistry C, 116(9), 5420-5426. doi:10.1021/jp211474eLi, W., Zhang, Q., Zheng, G., Seh, Z. W., Yao, H., & Cui, Y. (2013). Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance. Nano Letters, 13(11), 5534-5540. doi:10.1021/nl403130hZhu, C., Zhai, J., Wen, D., & Dong, S. (2012). Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. Journal of Materials Chemistry, 22(13), 6300. doi:10.1039/c2jm16699bDing, C., Qian, X., Yu, G., & An, X. (2010). Dopant effect and characterization of polypyrrole-cellulose composites prepared by in situ polymerization process. Cellulose, 17(6), 1067-1077. doi:10.1007/s10570-010-9442-6Yuan, L., Yao, B., Hu, B., Huo, K., Chen, W., & Zhou, J. (2013). Polypyrrole-coated paper for flexible solid-state energy storage. Energy & Environmental Science, 6(2), 470. doi:10.1039/c2ee23977aLu, Y., Tao, P., Zhang, N., & Nie, S. (2020). Preparation and thermal stability evaluation of cellulose nanofibrils from bagasse pulp with differing hemicelluloses contents. Carbohydrate Polymers, 245, 116463. doi:10.1016/j.carbpol.2020.116463Zhang, Y., Hao, N., Lin, X., & Nie, S. (2020). Emerging challenges in the thermal management of cellulose nanofibril-based supercapacitors, lithium-ion batteries and solar cells: A review. Carbohydrate Polymers, 234, 115888. doi:10.1016/j.carbpol.2020.115888Wang, Y., Sotzing, G. A., & Weiss, R. A. (2008). Preparation of Conductive Polypyrrole/Polyurethane Composite Foams by In situ Polymerization of Pyrrole. Chemistry of Materials, 20(7), 2574-2582. doi:10.1021/cm800005rLunt, J. (1998). Large-scale production, properties and commercial applications of polylactic acid polymers. Polymer Degradation and Stability, 59(1-3), 145-152. doi:10.1016/s0141-3910(97)00148-1Mróz, P., Białas, S., Mucha, M., & Kaczmarek, H. (2013). Thermogravimetric and DSC testing of poly(lactic acid) nanocomposites. Thermochimica Acta, 573, 186-192. doi:10.1016/j.tca.2013.09.012Araque-Monrós, M. C., Vidaurre, A., Gil-Santos, L., Gironés Bernabé, S., Monleón-Pradas, M., & Más-Estellés, J. (2013). Study of the degradation of a new PLA braided biomaterial in buffer phosphate saline, basic and acid media, intended for the regeneration of tendons and ligaments. Polymer Degradation and Stability, 98(9), 1563-1570. doi:10.1016/j.polymdegradstab.2013.06.031Ramot, Y., Haim-Zada, M., Domb, A. J., & Nyska, A. (2016). Biocompatibility and safety of PLA and its copolymers. Advanced Drug Delivery Reviews, 107, 153-162. doi:10.1016/j.addr.2016.03.012Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340, 9-14. doi:10.1016/j.cej.2018.01.010Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019Garlotta, D. (2001). Journal of Polymers and the Environment, 9(2), 63-84. doi:10.1023/a:1020200822435Mofokeng, J. P., Luyt, A. S., Tábi, T., & Kovács, J. (2011). Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 25(8), 927-948. doi:10.1177/0892705711423291Chieng, B., Ibrahim, N., Yunus, W., & Hussein, M. (2013). Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers, 6(1), 93-104. doi:10.3390/polym6010093Chitte, H. K., Shinde, G. N., Bhat, N. V., & Walunj, V. E. (2011). Synthesis of Polypyrrole Using Ferric Chloride (FeCl<sub>3</sub>) as Oxidant Together with Some Dopants for Use in Gas Sensors. Journal of Sensor Technology, 01(02), 47-56. doi:10.4236/jst.2011.12007Uyar, T., Toppare, L., & Hacaloğlu, J. (2002). Characterization of electrochemically synthesized p-toluene sulfonic acid doped polypyrrole by direct insertion probe pyrolysis mass spectrometry. Journal of Analytical and Applied Pyrolysis, 64(1), 1-13. doi:10.1016/s0165-2370(01)00166-8Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response. Journal of Non-Crystalline Solids, 144, 1-13. doi:10.1016/s0022-3093(05)80377-1Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting glasses. II. Free carrier concentration and mobility. Journal of Non-Crystalline Solids, 144, 14-20. doi:10.1016/s0022-3093(05)80378-3Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2009). Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly(ethylene oxide). The Journal of Chemical Physics, 130(6), 064907. doi:10.1063/1.3063659Chronakis, I. S., Grapenson, S., & Jakob, A. (2006). Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties. Poly

    BDNF-Gene Transfected Schwann Cell-Assisted Axonal Extension and Sprouting on New PLA-PPy Microfiber Substrates

    Get PDF
    [EN] The work here reported analyzes the effect of increased efficiency of brainderived neurotrophic factor (BDNF) production by electroporated Schwann cells (SCs) on the axonal extension in a coculture system on a biomaterial platform that can be of interest for the treatment of injuries of the nervous system, both central and peripheral. Rat SCs are electrotransfected with a plasmid coding for the BDNF protein in order to achieve an increased expression and release of this protein into the culture medium of the cells, performing the best balance between the level of transfection and the number of living cells. Gene-transfected SCs show an about 100-fold increase in the release of BDNF into the culture medium, compared to nonelectroporated SCs. Cocultivation of electroporated SCs with rat dorsal root ganglia (DRG) is performed on highly aligned substrates of polylactic acid (PLA) microfibers coated with the electroconductive polymer polypyrrol (PPy). The coculture of DRG with electrotransfected SCs increase both the axonal extension and the axonal sprouting from DRG neurons compared to the coculture of DRG with nonelectroporated SCs. Therefore, the use of PLA¿PPy highly aligned microfiber substrates preseeded with electrotransfected SCs with an increased BDNF secretion is capable of both guiding and accelerating axonal growth.The authors acknowledge financial support from the Spanish Government's State Research Agency (AEI) through projects DPI2015-72863-EXP and RTI2018-095872-B-C22/ERDF. F.G.R. acknowledges the scholarship FPU16/01833 and the short stay mobility aid EST18/00524 of the Spanish Ministry of Universities. F.G.R. also acknowledges the hosting at the Vectorology and Anti-cancer Therapies Centre (UMR 8203 CNRS). The authors thank the Electron Microscopy Service at the UPV, where the FESEM images were obtained.Gisbert-Roca, F.; André, FM.; Más Estellés, J.; Monleón Pradas, M.; Mir, LM.; Martínez-Ramos, C. (2021). BDNF-Gene Transfected Schwann Cell-Assisted Axonal Extension and Sprouting on New PLA-PPy Microfiber Substrates. Macromolecular Bioscience (Online). 21(5):1-13. https://doi.org/10.1002/mabi.202000391S11321

    Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility

    Get PDF
    [EN] We address the production of structures intended as conduits made from natural biopolymers, capable of promoting the regeneration of axonal tracts. We combine hyaluronic acid (HA) and silk fibroin (SF) with the aim of improving mechanical and biological properties of HA. The results show that SF can be efficiently incorporated into the production process, obtaining conduits with tubular structure with a matrix of HA-SF blend. HA-SF has better mechanical properties than sole HA, which is a very soft hydrogel, facilitating manipulation. Culture of rat Schwann cells shows that cell adhesion and proliferation are higher than in pure HA, maybe due to the binding motifs contributed by the SF protein. This increased proliferation accelerates the formation of a tight cell layer, which covers the inner channel surface of the HA-SF tubes. Biocompatibility of the scaffolds was studied in immunocompetent mice. Both HA and HA-SF scaffolds were accepted by the host with no residual immune response at 8 weeks. New collagen extracellular matrix and new blood vessels were visible and they were present earlier when SF was present. The results show that incorporation of SF enhances the mechanical properties of the materials and results in promising biocompatible conduits for tubulization strategies.The authors acknowledge financing from the Spanish Ministry of Economy and Competitiveness through grants RTI2018-095872-B-C22/ERDF, DPI2015-72863-EXP, MAT2016-79832-R, MAT2016-76847-R and Community of Madrid through grant Neurocentro-B2017/BMD-3760. FGR acknowledges scholarship FPU16/01833 of the Spanish Ministry of Education, Culture and Sports. We thank the Electron Microscopy Service at the UPV, where the FESEM images were obtainedGisbert-Roca, F.; Lozano Picazo, P.; Pérez-Rigueiro, J.; Guinea Tortuero, GV.; Monleón Pradas, M.; Martínez-Ramos, C. (2020). Conduits based on the combination of hyaluronic acid and silk fibroin: Characterization, in vitro studies and in vivo biocompatibility. International Journal of Biological Macromolecules. 148:378-390. https://doi.org/10.1016/j.ijbiomac.2020.01.149S378390148Fawcett, J. W., & Asher, R. . (1999). The glial scar and central nervous system repair. Brain Research Bulletin, 49(6), 377-391. doi:10.1016/s0361-9230(99)00072-6Koeppen, A. H. (2004). Wallerian degeneration: history and clinical significance. Journal of the Neurological Sciences, 220(1-2), 115-117. doi:10.1016/j.jns.2004.03.008Hall, S. (2005). The response to injury in the peripheral nervous system. The Journal of Bone and Joint Surgery. British volume, 87-B(10), 1309-1319. doi:10.1302/0301-620x.87b10.16700Dubový, P., Klusáková, I., & Hradilová Svíženská, I. (2014). Inflammatory Profiling of Schwann Cells in Contact with Growing Axons Distal to Nerve Injury. BioMed Research International, 2014, 1-7. doi:10.1155/2014/691041Houschyar, K. S., Momeni, A., Pyles, M. N., Cha, J. Y., Maan, Z. N., Duscher, D., … Schoonhoven, J. van. (2016). The Role of Current Techniques and Concepts in Peripheral Nerve Repair. Plastic Surgery International, 2016, 1-8. doi:10.1155/2016/4175293Tian, L., Prabhakaran, M. P., & Ramakrishna, S. (2015). Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regenerative Biomaterials, 2(1), 31-45. doi:10.1093/rb/rbu017Kehoe, S., Zhang, X. F., & Boyd, D. (2012). FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury, 43(5), 553-572. doi:10.1016/j.injury.2010.12.030Collins, M. N., & Birkinshaw, C. (2013). Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydrate Polymers, 92(2), 1262-1279. doi:10.1016/j.carbpol.2012.10.028Cowman, M. K., & Matsuoka, S. (2005). Experimental approaches to hyaluronan structure. Carbohydrate Research, 340(5), 791-809. doi:10.1016/j.carres.2005.01.022Liang, Y., Walczak, P., & Bulte, J. W. M. (2013). The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials, 34(22), 5521-5529. doi:10.1016/j.biomaterials.2013.03.095Wang, T.-W., & Spector, M. (2009). Development of hyaluronic acid-based scaffolds for brain tissue engineering. Acta Biomaterialia, 5(7), 2371-2384. doi:10.1016/j.actbio.2009.03.033Ma, J., Tian, W.-M., Hou, S.-P., Xu, Q.-Y., Spector, M., & Cui, F.-Z. (2007). An experimental test of stroke recovery by implanting a hyaluronic acid hydrogel carrying a Nogo receptor antibody in a rat model. Biomedical Materials, 2(4), 233-240. doi:10.1088/1748-6041/2/4/005Tian, W. M., Hou, S. P., Ma, J., Zhang, C. L., Xu, Q. Y., Lee, I. S., … Cui, F. Z. (2005). Hyaluronic Acid–Poly-D-Lysine-Based Three-Dimensional Hydrogel for Traumatic Brain Injury. Tissue Engineering, 11(3-4), 513-525. doi:10.1089/ten.2005.11.513Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040Ortuño-Lizarán, I., Vilariño-Feltrer, G., Martínez-Ramos, C., Pradas, M. M., & Vallés-Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication, 8(4), 045011. doi:10.1088/1758-5090/8/4/045011Vepari, C., & Kaplan, D. L. (2007). Silk as a biomaterial. Progress in Polymer Science, 32(8-9), 991-1007. doi:10.1016/j.progpolymsci.2007.05.013Murphy, A. R., & Kaplan, D. L. (2009). Biomedical applications of chemically-modified silk fibroin. Journal of Materials Chemistry, 19(36), 6443. doi:10.1039/b905802hSofia, S., McCarthy, M. B., Gronowicz, G., & Kaplan, D. L. (2000). Functionalized silk-based biomaterials for bone formation. Journal of Biomedical Materials Research, 54(1), 139-148. doi:10.1002/1097-4636(200101)54:13.0.co;2-7Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., … Kaplan, D. L. (2003). Silk-based biomaterials. Biomaterials, 24(3), 401-416. doi:10.1016/s0142-9612(02)00353-8Horan, R. L., Antle, K., Collette, A. L., Wang, Y., Huang, J., Moreau, J. E., … Altman, G. H. (2005). In vitro degradation of silk fibroin. Biomaterials, 26(17), 3385-3393. doi:10.1016/j.biomaterials.2004.09.020Chi, N.-H., Yang, M.-C., Chung, T.-W., Chou, N.-K., & Wang, S.-S. (2013). Cardiac repair using chitosan-hyaluronan/silk fibroin patches in a rat heart model with myocardial infarction. Carbohydrate Polymers, 92(1), 591-597. doi:10.1016/j.carbpol.2012.09.012Chi, N.-H., Yang, M.-C., Chung, T.-W., Chen, J.-Y., Chou, N.-K., & Wang, S.-S. (2012). Cardiac repair achieved by bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model. Biomaterials, 33(22), 5541-5551. doi:10.1016/j.biomaterials.2012.04.030Yang, M.-C., Chi, N.-H., Chou, N.-K., Huang, Y.-Y., Chung, T.-W., Chang, Y.-L., … Wang, S.-S. (2010). The influence of rat mesenchymal stem cell CD44 surface markers on cell growth, fibronectin expression, and cardiomyogenic differentiation on silk fibroin – Hyaluronic acid cardiac patches. Biomaterials, 31(5), 854-862. doi:10.1016/j.biomaterials.2009.09.096Zhou, J., Zhang, B., Liu, X., Shi, L., Zhu, J., Wei, D., … He, D. (2016). Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release. Carbohydrate Polymers, 143, 301-309. doi:10.1016/j.carbpol.2016.01.023Yan, S., Li, M., Zhang, Q., & Wang, J. (2013). Blend films based on silk fibroin/hyaluronic acid. Fibers and Polymers, 14(2), 188-194. doi:10.1007/s12221-013-0188-2Foss, C., Merzari, E., Migliaresi, C., & Motta, A. (2012). Silk Fibroin/Hyaluronic Acid 3D Matrices for Cartilage Tissue Engineering. Biomacromolecules, 14(1), 38-47. doi:10.1021/bm301174xJaipaew, J., Wangkulangkul, P., Meesane, J., Raungrut, P., & Puttawibul, P. (2016). Mimicked cartilage scaffolds of silk fibroin/hyaluronic acid with stem cells for osteoarthritis surgery: Morphological, mechanical, and physical clues. Materials Science and Engineering: C, 64, 173-182. doi:10.1016/j.msec.2016.03.063Fan, Z., Zhang, F., Liu, T., & Zuo, B. Q. (2014). Effect of hyaluronan molecular weight on structure and biocompatibility of silk fibroin/hyaluronan scaffolds. International Journal of Biological Macromolecules, 65, 516-523. doi:10.1016/j.ijbiomac.2014.01.058Chung, T.-W., & Chang, Y.-L. (2010). Silk fibroin/chitosan–hyaluronic acid versus silk fibroin scaffolds for tissue engineering: promoting cell proliferations in vitro. Journal of Materials Science: Materials in Medicine, 21(4), 1343-1351. doi:10.1007/s10856-009-3876-0Garcia-Fuentes, M., Meinel, A. J., Hilbe, M., Meinel, L., & Merkle, H. P. (2009). Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering. Biomaterials, 30(28), 5068-5076. doi:10.1016/j.biomaterials.2009.06.008Raia, N. R., Partlow, B. P., McGill, M., Kimmerling, E. P., Ghezzi, C. E., & Kaplan, D. L. (2017). Enzymatically crosslinked silk-hyaluronic acid hydrogels. Biomaterials, 131, 58-67. doi:10.1016/j.biomaterials.2017.03.046Yan, S., Zhang, Q., Wang, J., Liu, Y., Lu, S., Li, M., & Kaplan, D. L. (2013). Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomaterialia, 9(6), 6771-6782. doi:10.1016/j.actbio.2013.02.016Garcia-Fuentes, M., Giger, E., Meinel, L., & Merkle, H. P. (2008). The effect of hyaluronic acid on silk fibroin conformation. Biomaterials, 29(6), 633-642. doi:10.1016/j.biomaterials.2007.10.024Hu, X., Lu, Q., Sun, L., Cebe, P., Wang, X., Zhang, X., & Kaplan, D. L. (2010). Biomaterials from Ultrasonication-Induced Silk Fibroin−Hyaluronic Acid Hydrogels. Biomacromolecules, 11(11), 3178-3188. doi:10.1021/bm1010504Ren, Y.-J., Zhou, Z.-Y., Liu, B.-F., Xu, Q.-Y., & Cui, F.-Z. (2009). Preparation and characterization of fibroin/hyaluronic acid composite scaffold. International Journal of Biological Macromolecules, 44(4), 372-378. doi:10.1016/j.ijbiomac.2009.02.004Cazzaniga, A., Ballin, A., & Brandt, F. (2008). Hyaluronic acid gel fillers in the management of facial aging. Clinical Interventions in Aging, Volume 3, 153-159. doi:10.2147/cia.s2135Sun, S.-F., Chou, Y.-J., Hsu, C.-W., & Chen, W.-L. (2009). Hyaluronic acid as a treatment for ankle osteoarthritis. Current Reviews in Musculoskeletal Medicine, 2(2), 78-82. doi:10.1007/s12178-009-9048-5Yucel, T., Lovett, M. L., & Kaplan, D. L. (2014). Silk-based biomaterials for sustained drug delivery. Journal of Controlled Release, 190, 381-397. doi:10.1016/j.jconrel.2014.05.059Bettinger, C. J., Cyr, K. M., Matsumoto, A., Langer, R., Borenstein, J. T., & Kaplan, D. L. (2007). Silk Fibroin Microfluidic Devices. Advanced Materials, 19(19), 2847-2850. doi:10.1002/adma.200602487Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: an open-source platform for biological-image analysis. Nature Methods, 9(7), 676-682. doi:10.1038/nmeth.2019Taddei, P., Pavoni, E., & Tsukada, M. (2016). Stability toward alkaline hydrolysis ofB.morisilk fibroin grafted with methacrylamide. Journal of Raman Spectroscopy, 47(6), 731-739. doi:10.1002/jrs.4892Perea, G. B., Solanas, C., Marí-Buyé, N., Madurga, R., Agulló-Rueda, F., Muinelo, A., … Pérez-Rigueiro, J. (2016). The apparent variability of silkworm ( Bombyx mori ) silk and its relationship with degumming. European Polymer Journal, 78, 129-140. doi:10.1016/j.eurpolymj.2016.03.012Hu, M., Sabelman, E. E., Tsai, C., Tan, J., & Hentz, V. R. (2000). Improvement of Schwann Cell Attachment and Proliferation on Modified Hyaluronic Acid Strands by Polylysine. Tissue Engineering, 6(6), 585-593. doi:10.1089/10763270050199532Monteiro, G. A., Fernandes, A. V., Sundararaghavan, H. G., & Shreiber, D. I. (2011). Positively and Negatively Modulating Cell Adhesion to Type I Collagen Via Peptide Grafting. Tissue Engineering Part A, 17(13-14), 1663-1673. doi:10.1089/ten.tea.2008.0346Ude, A. U., Eshkoor, R. A., Zulkifili, R., Ariffin, A. K., Dzuraidah, A. W., & Azhari, C. H. (2014). Bombyx mori silk fibre and its composite: A review of contemporary developments. Materials & Design, 57, 298-305. doi:10.1016/j.matdes.2013.12.052Atkins, E. D. T., Phelps, C. F., & Sheehan, J. K. (1972). The conformation of the mucopolysaccharides. Hyaluronates. Biochemical Journal, 128(5), 1255-1263. doi:10.1042/bj128125

    Alginate-Agarose Hydrogels Improve the In Vitro Differentiation of Human Dental Pulp Stem Cells in Chondrocytes. A Histological Study

    Full text link
    [EN] Matrix-assisted autologous chondrocyte implantation (MACI) has shown promising results for cartilage repair, combining cultured chondrocytes and hydrogels, including alginate. The ability of chondrocytes for MACI is limited by different factors including donor site morbidity, dedifferentiation, limited lifespan or poor proliferation in vitro. Mesenchymal stem cells could represent an alternative for cartilage regeneration. In this study, we propose a MACI scaffold consisting of a mixed alginate-agarose hydrogel in combination with human dental pulp stem cells (hDPSCs), suitable for cartilage regeneration. Scaffolds were characterized according to their rheological properties, and their histomorphometric and molecular biology results. Agarose significantly improved the biomechanical behavior of the alginate scaffolds. Large scaffolds were manufactured, and a homogeneous distribution of cells was observed within them. Although primary chondrocytes showed a greater capacity for chondrogenic differentiation, hDPSCs cultured in the scaffolds formed large aggregates of cells, acquired a rounded morphology and expressed high amounts of type II collagen and aggrecan. Cells cultured in the scaffolds expressed not only chondral matrix-related genes, but also remodeling proteins and chondrocyte differentiation factors. The degree of differentiation of cells was proportional to the number and size of the cell aggregates that were formed in the hydrogels.This work was funded by the Ministry of Economy and Competitiveness of the Spanish Government (PID2019-106099RB-C42, MM) and by the Generalitat Valenciana, Spain (PROMETEO/2020/069, CC). CIBER-BBN and CIBER-ER are financed by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and the Instituto de Salud Carlos III, with assistance of the European Regional Development Fund.Oliver-Ferrándiz, M.; Milián, L.; Sancho-Tello, M.; Martín De Llano, JJ.; Gisbert-Roca, F.; Martínez-Ramos, C.; Carda, C.... (2021). Alginate-Agarose Hydrogels Improve the In Vitro Differentiation of Human Dental Pulp Stem Cells in Chondrocytes. A Histological Study. Biomedicines. 9(7):1-22. https://doi.org/10.3390/biomedicines9070834S1229

    A Hyaluronic Acid Demilune Scaffold and Polypyrrole-Coated Fibers Carrying Embedded Human Neural Precursor Cells and Curcumin for Surface Capping of Spinal Cord Injuries

    Get PDF
    [EN] Tissue engineering, including cell transplantation and the application of biomaterials and bioactive molecules, represents a promising approach for regeneration following spinal cord injury (SCI). We designed a combinatorial tissue-engineered approach for the minimally invasive treatment of SCI¿a hyaluronic acid (HA)-based scaffold containing polypyrrole-coated fibers (PPY) combined with the RAD16-I self-assembling peptide hydrogel (Corning® PuraMatrix¿peptide hydrogel (PM)), human induced neural progenitor cells (iNPCs), and a nanoconjugated form of curcumin (CURC). In vitro cultures demonstrated that PM preserves iNPC viability and the addition of CURC reduces apoptosis and enhances the outgrowth of Nestin-positive neurites from iNPCs, compared to nonembedded iNPCs. The treatment of spinal cord organotypic cultures also demonstrated that CURC enhances cell migration and prompts a neuron-like morphology of embedded iNPCs implanted over the tissue slices. Following sub-acute SCI by traumatic contusion in rats, the implantation of PMembedded iNPCs and CURC with PPY fibers supported a significant increase in neuro-preservation (as measured by greater III-tubulin staining of neuronal fibers) and decrease in the injured area (as measured by the lack of GFAP staining). This combination therapy also restricted platelet-derived growth factor expression, indicating a reduction in fibrotic pericyte invasion. Overall, these findings support PM-embedded iNPCs with CURC placed within an HA demilune scaffold containing PPY fibers as a minimally invasive combination-based alternative to cell transplantation alone.This research was funded by the Science by Women program, Women for Africa Foundation to H.E. and the grants FEDER/Ministerio de Ciencia e Innovacion-Agencia Estatal de Investigacion [RTI2018-095872-B-C21 and -C22/ERDF]; Part of the equipment employed in this work was funded by Generalitat Valenciana and cofinanced with ERDF funds (OP ERDF of Comunitat Valenciana 2014-2020). RISEUP project FetOpen in H2020 Program: H2020-FETOPEN-2018-2019-2020-01.Elkhenany, H.; Bonilla, P.; Giraldo-Reboloso, E.; Alastrue Agudo, A.; Edel, MJ.; Vicent, MJ.; Gisbert-Roca, F.... (2021). A Hyaluronic Acid Demilune Scaffold and Polypyrrole-Coated Fibers Carrying Embedded Human Neural Precursor Cells and Curcumin for Surface Capping of Spinal Cord Injuries. Biomedicines. 9(12):1-19. https://doi.org/10.3390/biomedicines9121928S11991

    Electric Field Bridging-Effect in Electrified Microfibrils’ Scaffolds

    Get PDF
    Introduction: The use of biocompatible scaffolds combined with the implantation of neural stem cells, is increasingly being investigated to promote the regeneration of damaged neural tissue, for instance, after a Spinal Cord Injury (SCI). In particular, aligned Polylactic Acid (PLA) microfibrils’ scaffolds are capable of supporting cells, promoting their survival and guiding their differentiation in neural lineage to repair the lesion. Despite its biocompatible nature, PLA is an electrically insulating material and thus it could be detrimental for increasingly common scaffolds’ electric functionalization, aimed at accelerating the cellular processes. In this context, the European RISEUP project aims to combine high intense microseconds pulses and DC stimulation with neurogenesis, supported by a PLA microfibrils’ scaffold. Methods: In this paper a numerical study on the effect of microfibrils’ scaffolds on the E-field distribution, in planar interdigitated electrodes, is presented. Realistic microfibrils’ 3D CAD models have been built to carry out a numerical dosimetry study, through Comsol Multiphysics software. Results: Under a voltage of 10 V, microfibrils redistribute the E-field values focalizing the field streamlines in the spaces between the fibers, allowing the field to pass and reach maximum values up to 100 kV/m and values comparable with the bare electrodes’ device (without fibers). Discussion: Globally the median E-field inside the scaffolded electrodes is the 90% of the nominal field, allowing an adequate cells’ exposure
    corecore