71 research outputs found
Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study
Background
Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood.
Methods
We simulated a 150 × 150 mm 2D sheet of cardiac ventricular tissue using a simplified computational model. We investigated wavebreak and re-entry initiated by an S1S2S3 stimulus protocol in tissue sheets with two regions, each with different APD restitution. The two regions had a different APD at short diastolic interval (DI), but similar APD at long DI. Simulations were performed twice; once with both regions having steep (slope > 1), and once with both regions having flat (slope < 1) APD restitution.
Results
Wavebreak and re-entry were readily initiated using the S1S2S3 protocol in tissue sheets with two regions having different APD restitution properties. Initiation occurred irrespective of whether the APD restitution slopes were steep or flat. With steep APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms with S1S2 of 250 ms, to 75 ms (S1S2 180 ms). With flat APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms (S1S2 250 ms), to 21 ms (S1S2 340 ms) and then 11 ms (S1S2 400 ms).
Conclusion
Regional differences in APD restitution are an arrhythmogenic substrate that can be concealed at normal heart rates. A premature stimulus produces regional differences in repolarisation, and a further premature stimulus can then result in wavebreak and initiate re-entry. This mechanism for initiating re-entry is independent of the steepness of the APD restitution curve
Fast core rotation in red-giant stars revealed by gravity-dominated mixed modes
When the core hydrogen is exhausted during stellar evolution, the central
region of a star contracts and the outer envelope expands and cools, giving
rise to a red giant, in which convection occupies a large fraction of the star.
Conservation of angular momentum requires that the cores of these stars rotate
faster than their envelopes, and indirect evidence supports this. Information
about the angular momentum distribution is inaccessible to direct observations,
but it can be extracted from the effect of rotation on oscillation modes that
probe the stellar interior. Here, we report the detection of non-rigid rotation
in the interiors of red-giant stars by exploiting the rotational frequency
splitting of recently detected mixed modes. We demonstrate an increasing
rotation rate from the surface of the star to the stellar core. Comparing with
theoretical stellar models, we conclude that the core must rotate at least ten
times faster than the surface. This observational result confirms the
theoretical prediction of a steep gradient in the rotation profile towards the
deep stellar interior.Comment: to appear as a Letter to Natur
- …