691 research outputs found

    On the Hersch-Payne-Schiffer inequalities for Steklov eigenvalues

    Get PDF
    We prove that the Hersch-Payne-Schiffer isoperimetric inequality for the nth nonzero Steklov eigenvalue of a bounded simply connected planar domain is sharp for all n ⩾ 1. The equality is attained in the limit by a sequence of simply connected domains degenerating into a disjoint union of n identical disks. Similar results are obtained for the product of two consecutive Steklov eigenvalues. We also give a new proof of the Hersch-Payne-Schiffer inequality for n = 2 and show that it is strict in this cas

    Large Steklov eigenvalues via homogenisation on manifolds

    Get PDF
    Using methods in the spirit of deterministic homogenisation theory we obtain convergence of the Steklov eigenvalues of a sequence of domains in a Riemannian manifold to weighted Laplace eigenvalues of that manifold. The domains are obtained by removing small geodesic balls that are asymptotically densely uniformly distributed as their radius tends to zero. We use this relationship to construct manifolds that have large Steklov eigenvalues. In dimension two, and with constant weight equal to 1, we prove that Kokarev’s upper bound of 8\pi for the first nonzero normalised Steklov eigenvalue on orientable surfaces of genus 0 is saturated. For other topological types and eigenvalue indices, we also obtain lower bounds on the best upper bound for the eigenvalue in terms of Laplace maximisers. For the first two eigenvalues, these lower bounds become equalities. A surprising consequence is the existence of free boundary minimal surfaces immersed in the unit ball by first Steklov eigenfunctions and with area strictly larger than 2\pi. This was previously thought to be impossible. We provide numerical evidence that some of the already known examples of free boundary minimal surfaces have these properties and also exhibit simulations of new free boundary minimal surfaces of genus zero in the unit ball with even larger area. We prove that the first nonzero Steklov eigenvalue of all these examples is equal to 1, as a consequence of their symmetries and topology, so that they are consistent with a general conjecture by Fraser and Li. In dimension three and larger, we prove that the isoperimetric inequality of Colbois–El Soufi–Girouard is sharp and implies an upper bound for weighted Laplace eigenvalues. We also show that in any manifold with a fixed metric, one can construct by varying the weight a domain with connected boundary whose first nonzero normalised Steklov eigenvalue is arbitrarily large

    Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space

    Get PDF
    We obtain upper and lower bounds for Steklov eigenvalues of submanifolds with prescribed boundary in Euclidean space. A very general upper bound is proved, which depends only on the geometry of the fixed boundary and on the measure of the interior. Sharp lower bounds are given for hypersurfaces of revolution with connected boundary: We prove that each eigenvalue is uniquely minimized by the ball. We also observe that each surface of revolution with connected boundary is Steklov isospectral to the disk

    Retention-Oriented Curricular Design

    Get PDF
    This paper presents a retention-oriented approach to the educational value stream within the STEM undergraduate area. Faced with several strategic challenges and opportunities, a Flex Advantage Plan was developed to enhance the undergraduate engineering technology programs and better utilize the curricular flexibilities inherent in the current structure. FAP provides distinction and uniqueness to these majors by presenting students with educational choices that add depth in a chosen discipline and/or another concentration. Flex Advantage has expanded awareness and increased enrollment in secondary degrees, minors and concentrations. In the next phase, the linkages between undergraduate and graduate studies will be addressed to provide a smoother transition for current undergraduate students and more relevant alternatives for part-time students

    Pointwise Bounds for Steklov Eigenfunctions

    Get PDF
    Let (Ω,g) be a compact, real-analytic Riemannian manifold with real-analytic boundary ∂Ω. The harmonic extensions of the boundary Dirichlet-to-Neumann eigenfunctions are called Steklov eigenfunctions. We show that the Steklov eigenfunctions decay exponentially into the interior in terms of the Dirichlet-to-Neumann eigenvalues and give a sharp rate of decay to first order at the boundary. The proof uses the Poisson representation for the Steklov eigenfunctions combined with sharp h-microlocal concentration estimates for the boundary Dirichlet-to-Neumann eigenfunctions near the cosphere bundle S∗∂Ω. These estimates follow from sharp estimates on the concentration of the FBI transforms of solutions to analytic pseudodifferential equations Pu=0 near the characteristic set {σ(P)=0}

    The Steklov spectrum of cuboids

    Get PDF
    The paper is concerned with the Steklov eigenvalue problem on cuboids of arbitrary dimension. We prove a two-term asymptotic formula for the counting function of Steklov eigenvalues on cuboids in dimension d ≥ 3. Apart from the standard Weyl term, we calculate explicitly the second term in the asymptotics, capturing the contribution of the (d - 2) - dimensional facets of a cuboid. Our approach is based on lattice counting techniques. While this strategy is similar to the one used for the Dirichlet Laplacian, the Steklov case carries additional complications. In particular, it is not clear how to establish directly the completeness of the system of Steklov eigenfunctions admitting separation of variables. We prove this result using a family of auxiliary Robin boundary value problems. Moreover, the correspondence between the Steklov eigenvalues and lattice points is not exact, and hence more delicate analysis is required to obtain spectral asymptotics. Some other related results are presented, such as an isoperimetric inequality for the first Steklov eigenvalue, a concentration property of high frequency Steklov eigenfunctions and applications to spectral determination of cuboids

    Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction

    Full text link
    With the unprecedented photometric precision of the Kepler Spacecraft, significant systematic and stochastic errors on transit signal levels are observable in the Kepler photometric data. These errors, which include discontinuities, outliers, systematic trends and other instrumental signatures, obscure astrophysical signals. The Presearch Data Conditioning (PDC) module of the Kepler data analysis pipeline tries to remove these errors while preserving planet transits and other astrophysically interesting signals. The completely new noise and stellar variability regime observed in Kepler data poses a significant problem to standard cotrending methods such as SYSREM and TFA. Variable stars are often of particular astrophysical interest so the preservation of their signals is of significant importance to the astrophysical community. We present a Bayesian Maximum A Posteriori (MAP) approach where a subset of highly correlated and quiet stars is used to generate a cotrending basis vector set which is in turn used to establish a range of "reasonable" robust fit parameters. These robust fit parameters are then used to generate a Bayesian Prior and a Bayesian Posterior Probability Distribution Function (PDF) which when maximized finds the best fit that simultaneously removes systematic effects while reducing the signal distortion and noise injection which commonly afflicts simple least-squares (LS) fitting. A numerical and empirical approach is taken where the Bayesian Prior PDFs are generated from fits to the light curve distributions themselves.Comment: 43 pages, 21 figures, Submitted for publication in PASP. Also see companion paper "Kepler Presearch Data Conditioning I - Architecture and Algorithms for Error Correction in Kepler Light Curves" by Martin C. Stumpe, et a
    • …
    corecore