979 research outputs found

    The three-dimensional noncommutative Gross-Neveu model

    Get PDF
    This work is dedicated to the study of the noncommutative Gross-Neveu model. As it is known, in the canonical Weyl-Moyal approach the model is inconsistent, basically due to the separation of the amplitudes into planar and nonplanar parts. We prove that if instead a coherent basis representation is used, the model becomes renormalizable and free of the aforementioned difficulty. We also show that, although the coherent states procedure breaks Lorentz symmetry in odd dimensions, in the Gross-Neveu model this breaking can be kept under control by assuming the noncommutativity parameters to be small enough. We also make some remarks on some ordering prescriptions used in the literature.Comment: 10 pages, IOP article style; v3: revised version, accepted for publication in J. Phys.

    Supersymmetric Extension of the Snyder Algebra

    Full text link
    We obtain a minimal supersymmetric extension of the Snyder algebra and study its representations. The construction differs from the general approach given in Hatsuda and Siegel ({\tt hep-th/0311002}), and does not utilize super-de Sitter groups. The spectra of the position operators are discrete, implying a lattice description of space, and the lattice is compatible with supersymmetry transformations.Comment: 14 page

    The Low Energy Limit of the Chern-Simons Theory Coupled to Fermions

    Get PDF
    We study the nonrelativistic limit of the theory of a quantum Chern--Simons field minimally coupled to Dirac fermions. To get the nonrelativistic effective Lagrangian one has to incorporate vacuum polarization and anomalous magnetic moment effects. Besides that, an unsuspected quartic fermionic interaction may also be induced. As a by product, the method we use to calculate loop diagrams, separating low and high loop momenta contributions, allows to identify how a quantum nonrelativistic theory nests in a relativistic one.Comment: 18 pages, 8 figures, Late

    The coupling of fermions to the three-dimensional noncommutative CPN1CP^{N-1} model: minimal and supersymmetric extensions

    Get PDF
    We consider the coupling of fermions to the three-dimensional noncommutative CPN1CP^{N-1} model. In the case of minimal coupling, although the infrared behavior of the gauge sector is improved, there are dangerous (quadratic) infrared divergences in the corrections to the two point vertex function of the scalar field. However, using superfield techniques we prove that the supersymmetric version of this model with ``antisymmetrized'' coupling of the Lagrange multiplier field is renormalizable up to the first order in 1N\frac{1}{N}. The auxiliary spinor gauge field acquires a nontrivial (nonlocal) dynamics with a generation of Maxwell and Chern-Simons noncommutative terms in the effective action. Up to the 1/N order all divergences are only logarithimic so that the model is free from nonintegrable infrared singularities.Comment: Minor corrections in the text and modifications in the list of reference

    Superfield covariant analysis of the divergence structure of noncommutative supersymmetric QED4_4

    Full text link
    Commutative supersymmetric Yang-Mills is known to be renormalizable for N=1,2{\cal N} = 1, 2, while finite for N=4{\cal N} = 4. However, in the noncommutative version of the model (NCSQED4_4) the UV/IR mechanism gives rise to infrared divergences which may spoil the perturbative expansion. In this work we pursue the study of the consistency of NCSQED4_4 by working systematically within the covariant superfield formulation. In the Landau gauge, it has already been shown for N=1{\cal N} = 1 that the gauge field two-point function is free of harmful UV/IR infrared singularities, in the one-loop approximation. Here we show that this result holds without restrictions on the number of allowed supersymmetries and for any arbitrary covariant gauge. We also investigate the divergence structure of the gauge field three-point function in the one-loop approximation. It is first proved that the cancellation of the leading UV/IR infrared divergences is a gauge invariant statement. Surprisingly, we have also found that there exist subleading harmful UV/IR infrared singularities whose cancellation only takes place in a particular covariant gauge. Thus, we conclude that these last mentioned singularities are in the gauge sector and, therefore, do not jeopardize the perturbative expansion and/or the renormalization of the theory.Comment: 36 pages, 11 figures. Minor correction

    Canonical Quantization of the Self-Dual Model coupled to Fermions

    Get PDF
    This paper is dedicated to formulate the interaction picture dynamics of the self-dual field minimally coupled to fermions. To make this possible, we start by quantizing the free self-dual model by means of the Dirac bracket quantization procedure. We obtain, as result, that the free self-dual model is a relativistically invariant quantum field theory whose excitations are identical to the physical (gauge invariant) excitations of the free Maxwell-Chern-Simons theory. The model describing the interaction of the self-dual field minimally coupled to fermions is also quantized through the Dirac bracket quantization procedure. One of the self-dual field components is found not to commute, at equal times, with the fermionic fields. Hence, the formulation of the interaction picture dynamics is only possible after the elimination of the just mentioned component. This procedure brings, in turns, two new interaction terms, which are local in space and time while non-renormalizable by power counting. Relativistic invariance is tested in connection with the elastic fermion-fermion scattering amplitude. We prove that all the non-covariant pieces in the interaction Hamiltonian are equivalent to the covariant minimal interaction of the self-dual field with the fermions. The high energy behavior of the self-dual field propagator corroborates that the coupled theory is non-renormalizable. Certainly, the self-dual field minimally coupled to fermions bears no resemblance with the renormalizable model defined by the Maxwell-Chern-Simons field minimally coupled to fermions.Comment: 16 pages, no special macros, no corrections in the pape

    Canonical Quantization of the Maxwell-Chern-Simons Theory in the Coulomb Gauge

    Get PDF
    The Maxwell-Chern-Simons theory is canonically quantized in the Coulomb gauge by using the Dirac bracket quantization procedure. The determination of the Coulomb gauge polarization vector turns out to be intrincate. A set of quantum Poincar\'e densities obeying the Dirac-Schwinger algebra, and, therefore, free of anomalies, is constructed. The peculiar analytical structure of the polarization vector is shown to be at the root for the existence of spin of the massive gauge quanta.The Coulomb gauge Feynman rules are used to compute the M\"oller scattering amplitude in the lowest order of perturbation theory. The result coincides with that obtained by using covariant Feynman rules. This proof of equivalence is, afterwards, extended to all orders of perturbation theory. The so called infrared safe photon propagator emerges as an effective propagator which allows for replacing all the terms in the interaction Hamiltonian of the Coulomb gauge by the standard field-current minimal interaction Hamiltonian.Comment: 21 pages, typeset in REVTEX, figures not include

    Nonrelativistic Quantum Particle in a Curved Space as a Constrained System

    Get PDF
    The operator and the functional formulations of the dynamics of constrained systems are explored for determining unambiguously the quantum Hamiltonian of a nonrelativistic particle in a curved space.Comment: 11 pages, latex, revtex, no figures. Accepted for publication in Phys. Lett.
    corecore