17 research outputs found

    Fe3O4 nanoparticles as additives for gamma-ray shielding: Structural and surface characterization

    Get PDF
    Monodisperse samples of magnetite nanoparticles in the size range of 5-13nm, were prepared by solvothermal synthesis and coprecipitation method. Obtained nanoparticles were characterized by different measurement techniques: X-ray diffraction analysis, transmission electron microscopy, selected area electron diffraction measurement, and Fourier transform infra-red spectroscopy. Measurements confirmed that the utilized synthesis methods are able to produce size and shape-controlled nanoparticles of a high-quality, that is of the technological importance. The results of the performed study represent the first stage in preparation of the Fe3O4 nanoparticles as an additive to concrete, which will be used for the construction of the special military facilities where it is necessary to provide a protection against γ-ray radiation

    Ce-modified zeolite BEA catalysts for the trichloroethylene oxidation. The role of the different and necessary active sites

    Full text link
    [EN] This paper reports the activity of different Ce-BEA zeolites for the catalytic oxidation of trichloroethylene and it is focused on determining the nature of the catalyst active sites. The study was made by using a microporous zeolite BEA, two types of desilicated BEA zeolites and mildly steamed desilicated BEA zeolites. The catalysts were prepared by introducing Ce to the zeolites with incipient wetness impregnation and their structural, textural, and acidic properties were established. The evolution of TCE conversion was correlated with the physicochemical properties of the zeolites. It is shown that highly developed mesopore surface area, well-dispersed cerium species and a high number of Bronsted sites results in the highest activity. The activity and selectivity of the Ce-loaded zeolites were found to be dependent on the number of high strength Bronsted acid centres. The hierarchical materials with a higher density of hydroxyls showed higher yields to HCl while the formation of chlorine was prevented.The work was financed by the Grant No. 2015/18/E/ST4/00191 from the National Science Centre, Poland. J.M-T. and A.E.P thank Spanish Governmentthrough "Severo Ochoa" SEV-2016-0683, RTI2018-099668-B-C21, RTI2018-101784-B-I00 and the Fundacion Ramon Arecesthrough a research contract of the "Life and Materials Science" program.Golabek, K.; Palomares Gimeno, AE.; Martínez-Triguero, J.; Tarach, KA.; Kruczala, K.; Girman, V.; Góra-Marek, K. (2019). Ce-modified zeolite BEA catalysts for the trichloroethylene oxidation. The role of the different and necessary active sites. Applied Catalysis B Environmental. 259:1-12. https://doi.org/10.1016/j.apcatb.2019.11802211225

    A Novel Composite Material Designed from FeSi Powder and Mn 0.8

    Get PDF
    A design of the novel microcomposite material composed of spherical FeSi particles and Mn0.8Zn0.2Fe2O4 ferrite is reported together with a characterization of basic mechanical and electrical properties. The sol-gel autocombustion method was used for a preparation of Mn0.8Zn0.2Fe2O4 ferrite, which has a spinel-type crystal structure as verified by XRD and TEM analysis. The final microcomposite samples were prepared by a combination of the traditional PM compaction technique supplemented with unconventional microwave sintering process of the prepared green compacts. The composition and distribution of the secondary phase formed by the spinel ferrite were examined by SEM. It is demonstrated that the prepared composite material has a tight arrangement without any significant porosity, which manifests itself through superior mechanical properties (high mechanical hardness, Young modulus, and transverse rupture strength) and specific electric resistivity compared to the related composite materials including resin as the organic binder

    Flash spark plasma sintering of UHTCs

    Get PDF
    During the five year XMat research project supported by EPSRC (Engineering and Physical Sciences Research Council, UK) at Queen Mary we developed a novel sintering technique called Flash Spark Plasma Sintering (FSPS[1]) which is particularly suitable for the ultrarapid (a few seconds) consolidation of UHTCs. As in the case of incandescent lamps, flash sintering techniques use localized Joule heating developed within the consolidating particles using typically a die-less configuration. Heating rates are extreme (104–106 °C/min), and the sintering temperature is therefore reached extremely rapidly. The research covered mostly metallic conductors (ZrB2[2], HfB2,TiB2) and semiconductors (B4C, SiC and their composites). The talk will summarize the joint XMat team efforts to: -Identify the FSPS consolidation mechanism using modelling and transmission electron microscopy, -Characterise the structural properties for the bulk materials and redefine the structure-property relationships of FSPSed materials Please click Additional Files below to see the full abstract

    Densification of boron carbide under high pressure

    No full text
    Additive-free boron carbide (B4C) powders were densified at 4 GPa using the high-pressure “anvil-type with hollows” apparatus in the temperature range of 1500–1900 °C. The boron carbide ceramics prepared by this method showed a hardness of 37 GPa, which is very close to the hardness of mono-crystal boron carbide. The study showed that the boron carbide grains are uniformly sized without observed grain growth in the sintered materials. Obtained results revealed that high-pressure sintering can be a very effective low-temperature densification method for the obtainment of additive-free B4C ceramics. Moreover, the process can be scaled-up for the production of large-size composites required in various cutting tools and other extreme condition applications

    The Influence of Nanosilica on Properties of Cement Based on Tetracalcium Phosphate/Monetite Mixture with Addition of Magnesium Pyrophoshate

    No full text
    The effect of nanosilica on the microstructure setting process of tetracalcium phosphate/nanomonetite calcium phosphate cement mixture (CPC) with the addition of 5 wt% of magnesium pyrophosphate (assigned as CT5MP) and osteogenic differentiation of mesenchymal stem cells cultured in cement extracts were studied. A more compact microstructure was observed in CT5MP cement with 0.5 wt% addition of nanosilica (CT5MP1Si) due to the synergistic effect of Mg2P2O7 particles, which strengthened the cement matrix and nanosilica, which supported gradual growth and recrystallization of HAP particles to form compact agglomerates. The addition of 0.5 wt% of nanosilica to CT5MP cement caused an increase in CS from 18 to 24 MPa while the setting time increased almost twofold. It was verified that adding nanosilica to CPC cement, even in a low amount (0.5 and 1 wt% of nanosilica), positively affected the injectability of cement pastes and differentiation of cells with upregulation of osteogenic markers in cells cultured in cement extracts. Results revealed appropriate properties of these types of cement for filling bone defects

    Mechanosynthesis and structural characterization of nanocrystalline Ce1-xYxO2-delta(x=0.1-0.35) solid solutions

    No full text
    A series of nanostructured fluorite-type Ce1-xYxO2-delta(0 LT = x LT = 0.35) solid solutions, prepared via high-energy milling of the CeO2/Y2O3 mixtures, are investigated by XRD, HR-TEM, EDS and Raman spectroscopy. For the first time, complementary information on both the long-range and short-range structural features of mechanosynthesized Ce1-xYxO2-delta, obtained by Rietveld analysis of XRD data and Raman spectroscopy, is provided. The lattice parameters of the as-prepared solid solutions decrease with increasing yttrium content. Rietveld refinements of the XRD data reveal increase in microstrains in the host ceria lattice as a consequence of yttrium incorporation. Raman spectra are directly affected by the presence of oxygen vacancies; their existence is evidenced by the presence of vibration modes at similar to 560 and similar to 600 cm(-1). The detailed spectroscopic investigations enable us to separate extrinsic and intrinsic origin of oxygen vacancies. It is demonstrated that mechanosynthesis can be successfully employed in the one-step preparation of nanocrystalline Ce1-xYxO2-delta solid solutions. (C) 2015 Elsevier Inc. All rights reserved
    corecore