6 research outputs found

    Occurrence of Harmful Cyanobacteria in Drinking Water from a Severely Drought-Impacted Semi-arid Region

    No full text
    Harmful cyanobacterial blooms have become increasingly common in freshwater ecosystems in recent decades, mainly due to eutrophication and climate change. Water becomes unreliable for human consumption. Here, we report a comprehensive study carried out to investigate the water quality of several Campina Grande reservoirs. Our approach included metagenomics, microbial abundance quantification, ELISA test for three cyanotoxins (microcystin, nodularins, and cylindrospermopsin), and in vivo ecotoxicological tests with zebrafish embryos. Cytometry analysis showed high cyanobacterial abundance, while metagenomics identified an average of 10.6% of cyanobacterial sequences, and demonstrated the presence of Microcystis, Cylindrospermopsis, and toxin coding genes in all ponds. Zebrafish embryos reared with pond water had high mortality and diverse malformations. Among the ponds analyzed, Araçagi showed the highest lethality (an average of 62.9 ± 0.8%), followed by Boqueirão (lethality average of 62.5 ± 0.8%). Here, we demonstrate that water from ponds undergoing extremely drought conditions have an abundance of potentially harmful cyanobacteria and their toxins. Our findings are consistent with a scenario in which polluted drinking water poses a great risk to human health

    Data_Sheet_1.docx

    No full text
    <p>Harmful cyanobacterial blooms have become increasingly common in freshwater ecosystems in recent decades, mainly due to eutrophication and climate change. Water becomes unreliable for human consumption. Here, we report a comprehensive study carried out to investigate the water quality of several Campina Grande reservoirs. Our approach included metagenomics, microbial abundance quantification, ELISA test for three cyanotoxins (microcystin, nodularins, and cylindrospermopsin), and in vivo ecotoxicological tests with zebrafish embryos. Cytometry analysis showed high cyanobacterial abundance, while metagenomics identified an average of 10.6% of cyanobacterial sequences, and demonstrated the presence of Microcystis, Cylindrospermopsis, and toxin coding genes in all ponds. Zebrafish embryos reared with pond water had high mortality and diverse malformations. Among the ponds analyzed, Araçagi showed the highest lethality (an average of 62.9 ± 0.8%), followed by Boqueirão (lethality average of 62.5 ± 0.8%). Here, we demonstrate that water from ponds undergoing extremely drought conditions have an abundance of potentially harmful cyanobacteria and their toxins. Our findings are consistent with a scenario in which polluted drinking water poses a great risk to human health.</p

    MicroRNAs 145 and 148a Are Upregulated During Congenital Zika Virus Infection.

    No full text
    Submitted by Fábio Marques ([email protected]) on 2019-07-04T13:28:28Z No. of bitstreams: 1 MicroRNAs_Marcelo_Ribeiro-Alves_INI_Lapclin-AIDS_2019.pdf: 1352248 bytes, checksum: 0223da5170d1c175d5eb393366ef4edd (MD5)Approved for entry into archive by Regina Costa ([email protected]) on 2019-07-04T16:40:10Z (GMT) No. of bitstreams: 1 MicroRNAs_Marcelo_Ribeiro-Alves_INI_Lapclin-AIDS_2019.pdf: 1352248 bytes, checksum: 0223da5170d1c175d5eb393366ef4edd (MD5)Made available in DSpace on 2019-07-04T16:40:10Z (GMT). No. of bitstreams: 1 MicroRNAs_Marcelo_Ribeiro-Alves_INI_Lapclin-AIDS_2019.pdf: 1352248 bytes, checksum: 0223da5170d1c175d5eb393366ef4edd (MD5) Previous issue date: 2019Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, USA.Faculdade de Ciências Médicas de Campina Grande, Núcleo de Genética Médica, Centro Universitário UniFacisa, Campina Grande, Brasil.Instituto de Pesquisa Professor Amorim Neto, Campina Grande, Brasil.Serviço de Neurologia, Hospital Vera Cruz, Belo Horizonte, Brasil.Fundação Oswaldo Cruz. Instituto Fernandes Figueira. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Fernandes Figueira. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Fernandes Figueira. Rio de Janeiro, RJ, Brasil.Laboratório de Neuropatologia, Instituto Estadual do Cérebro, Rio de Janeiro, Brasil.Faculdade de Ciências Médicas de Campina Grande, Núcleo de Genética Médica, Centro Universitário UniFacisa, Campina Grande, Brasil./ Instituto de Pesquisa Professor Amorim Neto, Campina Grande, Brasil.Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.Division of Infectious Diseases, Weill Cornell Medicine, New York City, NY, USA.Fundação Oswaldo Cruz. Instituto Nacional de Infectologia Evandro Chagas. Laboratório de Pesquisa Clínica em DST/AIDS. Rio de Janeiro, RJ, Brasil.Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil./ Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
    corecore