45 research outputs found
Effect of disorder on the pressure-induced superconducting state of CeAu2Si2
CeAu2Si2 is a newly discovered pressure-induced heavy fermion superconductor
which shows very unusual interplay between superconductivity and magnetism
under pressure. Here we compare the results of high-pressure measurements on
single crystalline CeAu2Si2 samples with different levels of disorder. It is
found that while the magnetic properties are essentially sample independent,
superconductivity is rapidly suppressed when the residual resistivity of the
sample increases. We show that the depression of bulk Tc can be well understood
in terms of pair breaking by nonmagnetic disorder, which strongly suggests an
unconventional pairing state in pressurized CeAu2Si2. Furthermore, increasing
the level of disorder leads to the emergence of another phase transition at T*
within the magnetic phase, which might be in competition with
superconductivity.Comment: 7 pages, 7 figure
Collapse of the Mott gap and emergence of a nodal liquid in lightly doped SrIrO
Superconductivity in underdoped cuprates emerges from an unusual electronic
state characterised by nodal quasiparticles and an antinodal pseudogap. The
relation between this state and superconductivity is intensely studied but
remains controversial. The discrimination between competing theoretical models
is hindered by a lack of electronic structure data from related doped Mott
insulators. Here we report the doping evolution of the Heisenberg
antiferromagnet SrIrO, a close analogue to underdoped cuprates. We
demonstrate that metallicity emerges from a rapid collapse of the Mott gap with
doping, resulting in lens-like Fermi contours rather than disconnected Fermi
arcs as observed in cuprates. Intriguingly though, the emerging electron liquid
shows nodal quasiparticles with an antinodal pseudogap and thus bares strong
similarities with underdoped cuprates. We conclude that anisotropic pseudogaps
are a generic property of two-dimensional doped Mott insulators rather than a
unique hallmark of cuprate high-temperature superconductivity
Turnbuckle diamond anvil cell for high-pressure measurements in a superconducting quantum interference device magnetometer
We have developed a miniature diamond anvil cell for magnetization measurements in a widely used magnetic property measurement system commercial magnetometer built around a superconducting quantum interference device. The design of the pressure cell is based on the turnbuckle principle in which force can be created and maintained by rotating the body of the device while restricting the counterthreaded end-nuts to translational movement. The load on the opposed diamond anvils and the sample between them is generated using a hydraulic press. The load is then locked by rotating the body of the cell with respect to the end-nuts. The dimensions of the pressure cell have been optimized by use of finite element analysis. The cell is approximately a cylinder 7 mm long and 7 mm in diameter and weighs only 1.5 g. Due to its small size the cell thermalizes rapidly. It is capable of achieving pressures in excess of 10 GPa while allowing measurements to be performed with the maximum sensitivity of the magnetometer. The performance of the pressure cell is illustrated by a high pressure magnetic study of Mn(3)[Cr(CN)(6)](2)center dot xH(2)O Prussian blue analog up to 10.3 GPa. (C) 2010 American Institute of Physics. [doi:10.1063/1.3465311]</p
Magnetic oxide semiconductors
Magnetic oxide semiconductors, oxide semiconductors doped with transition
metal elements, are one of the candidates for a high Curie temperature
ferromagnetic semiconductor that is important to realize semiconductor
spintronics at room temperature. We review in this paper recent progress of
researches on various magnetic oxide semiconductors. The magnetization,
magneto-optical effect, and magneto-transport such as anomalous Hall effect are
examined from viewpoint of feasibility to evaluate the ferromagnetism. The
ferromagnetism of Co-doped TiO2 and transition metal-doped ZnO is discussed.Comment: 26 pages, 5 tables, 6 figure
Pressure induced enhancement of the magnetic ordering temperature in rhenium(IV) monomers
Materials that demonstrate long-range magnetic order are synonymous with information storage and the electronics industry, with the phenomenon commonly associated with metals, metal alloys or metal oxides and sulfides. A lesser known family of magnetically ordered complexes are the monometallic compounds of highly anisotropic d-block transition metals; the ‘transformation’ from isolated zero-dimensional molecule to ordered, spin-canted, three-dimensional lattice being the result of through-space interactions arising from the combination of large magnetic anisotropy and spin-delocalization from metal to ligand which induces important intermolecular contacts. Here we report the effect of pressure on two such mononuclear rhenium(IV) compounds that exhibit long-range magnetic order under ambient conditions via a spin canting mechanism, with Tc controlled by the strength of the intermolecular interactions. As these are determined by intermolecular distance, ‘squeezing’ the molecules closer together generates remarkable enhancements in ordering temperatures, with a linear dependence of Tc with pressure
Enforcing Multifunctionality: A Pressure-Induced Spin-Crossover Photomagnet
Photomagnetic compounds are usually
achieved by assembling preorganized
individual molecules into rationally designed molecular architectures
via the bottom-up approach. Here we show that a magnetic response
to light can also be enforced in a nonphotomagnetic compound by applying
mechanical stress. The nonphotomagnetic cyano-bridged Fe<sup>II</sup>–Nb<sup>IV</sup> coordination polymer {[Fe<sup>II</sup>(pyrazole)<sub>4</sub>]<sub>2</sub>[Nb<sup>IV</sup>(CN)<sub>8</sub>]·4H<sub>2</sub>O}<sub><i>n</i></sub> (<b>FeNb</b>) has been
subjected to high-pressure structural, magnetic and photomagnetic
studies at low temperature, which revealed a wide spectrum of pressure-related
functionalities including the light-induced magnetization. The multifunctionality
of <b>FeNb</b> is compared with a simple structural and magnetic
pressure response of its analog {[Mn<sup>II</sup>(pyrazole)<sub>4</sub>]<sub>2</sub>[Nb<sup>IV</sup>(CN)<sub>8</sub>]·4H<sub>2</sub>O}<sub><i>n</i></sub> (<b>MnNb</b>). The <b>FeNb</b> coordination polymer is the first pressure-induced spin-crossover
photomagnet