388 research outputs found

    VLT/SPHERE robust astrometry of the HR8799 planets at milliarcsecond-level accuracy Orbital architecture analysis with PyAstrOFit

    Full text link
    HR8799 is orbited by at least four giant planets, making it a prime target for the recently commissioned Spectro-Polarimetric High-contrast Exoplanet REsearch (VLT/SPHERE). As such, it was observed on five consecutive nights during the SPHERE science verification in December 2014. We aim to take full advantage of the SPHERE capabilities to derive accurate astrometric measurements based on H-band images acquired with the Infra-Red Dual-band Imaging and Spectroscopy (IRDIS) subsystem, and to explore the ultimate astrometric performance of SPHERE in this observing mode. We also aim to present a detailed analysis of the orbital parameters for the four planets. We report the astrometric positions for epoch 2014.93 with an accuracy down to 2.0 mas, mainly limited by the astrometric calibration of IRDIS. For each planet, we derive the posterior probability density functions for the six Keplerian elements and identify sets of highly probable orbits. For planet d, there is clear evidence for nonzero eccentricity (e0.35e \simeq 0.35), without completely excluding solutions with smaller eccentricities. The three other planets are consistent with circular orbits, although their probability distributions spread beyond e=0.2e = 0.2, and show a peak at e0.1e \simeq 0.1 for planet e. The four planets have consistent inclinations of about 30deg30\deg with respect to the sky plane, but the confidence intervals for the longitude of ascending node are disjoint for planets b and c, and we find tentative evidence for non-coplanarity between planets b and c at the 2σ2 \sigma level.Comment: 23 pages, 14 figure

    A search for passive protoplanetary disks in the Taurus-Auriga star-forming region

    Full text link
    We conducted a 12-month monitoring campaign of 33 T Tauri stars (TTS) in Taurus. Our goal was to monitor objects that possess a disk but have a weak Halpha line, a common accretion tracer for young stars, to determine whether they host a passive circumstellar disk. We used medium-resolution optical spectroscopy to assess the objects' accretion status and to measure the Halpha line. We found no convincing example of passive disks; only transition disk and debris disk systems in our sample are non-accreting. Among accretors, we find no example of flickering accretion, leading to an upper limit of 2.2% on the duty cycle of accretion gaps assuming that all accreting TTS experience such events. Combining literature results with our observations, we find that the reliability of traditional Halpha-based criteria to test for accretion is high but imperfect, particularly for low-mass TTS. We find a significant correlation between stellar mass and the full width at 10 per cent of the peak (W10%) of the Halpha line that does not seem to be related to variations in free-fall velocity. Finally, our data reveal a positive correlation between the Halpha equivalent width and its W10%, indicative of a systematic modulation in the line profile whereby the high-velocity wings of the line are proportionally more enhanced than its core when the line luminosity increases. We argue that this supports the hypothesis that the mass accretion rate on the central star is correlated with the Halpha W10% through a common physical mechanism.Comment: accepted for publication in MNRAS; 26 pages, 9 figures, 3 table

    Spatially extended emission around the Cepheid RS Puppis in near-infrared hydrogen lines. Adaptive optics imaging with VLT/NACO

    Full text link
    It has been recently discovered that Cepheids harbor circumstellar envelopes (CSEs). RS Pup is the Cepheid that presents the most prominent circumstellar envelope known, the origin of which is not yet understood. Our purpose is to estimate the flux contribution of the CSE around RS Pup at the one arcsecond scale (~2000 AU) and to investigate its geometry, especially regarding asymmetries, to constrain its physical properties. We obtained near-infrared images in two narrow band filters centered on \lambda = 1.644 and 2.180 \mu m (NB 1.64 and IB 2.18, respectively) that comprise two recombination lines of hydrogen: the 12-4 and 7-4 (Brackett \gamma) transitions, respectively. We used NACO's cube mode observations in order to improve the angular resolution with the shift-and-add technique, and to qualitatively study the symmetry of the spatially extended emission from the CSE with a statistical study of the speckle noise. We probably detect at a 2\sigma level an extended emission with a relative flux (compared with the star in the same filter) of 38 ±\pm 17% in the NB 1.64 filter and 24 ±\pm 11% in the IB 2.18 filter. This emission is centered on RS Pup and does not present any detectable asymmetry. We attribute the detected emission to the likely presence of an hydrogen envelope surrounding the star

    Image quality and high contrast improvements on VLT/NACO

    Get PDF
    NACO is the famous and versatile diffraction limited NIR imager and spectrograph with which ESO celebrated 10 years of Adaptive Optics at the VLT. Since two years a substantial effort has been put in to understanding and fixing issues that directly affect the image quality and the high contrast performances of the instrument. Experiments to compensate the non-common-path aberrations and recover the highest possible Strehl ratios have been carried out successfully and a plan is hereafter described to perform such measurements regularly. The drift associated to pupil tracking since 2007 was fixed in October 2011. NACO is therefore even better suited for high contrast imaging and can be used with coronagraphic masks in the image plane. Some contrast measurements are shown and discussed. The work accomplished on NACO will serve as reference for the next generation instruments on the VLT, especially those working at the diffraction limit and making use of angular differential imaging (i.e. SPHERE, VISIR, possibly ERIS).Comment: 14 pages, 5 figures, SPIE 2012 Astronomical Instrumentation Proceedin

    Real-time Strehl and image quality performance estimator at Paranal Observatory

    Get PDF
    Here we describe a prototype Strehl and image quality performance estimator and its integration into Paranal operations, starting with UT4 and its suite of three infrared instruments: adaptive optics-fed imager/spectrograph NACO (temporarily out of operations) and integral field unit SINFONI, as well as wide-field imager HAWK-I. The real-time estimator processes the ambient conditions (seeing, coherence time, airmass, etc.) from the DIMM, and telescope Shack-Hartmann image analyzer to produce estimates of image quality and Strehl ratio every ~ 30 seconds. The estimate is using ad-hoc instrumental models, based in part on the PAOLA adaptive optics simulator. We discuss the current performance of the estimator vs real IQ and Strehl measurements, its impact on service mode efficiency, prospects for full deployment at other UTs, its use for the adaptive optics facility (AOF), and inclusion of the SLODAR-measured fine turbulence characteristics

    An apodizing phase plate coronagraph for VLT/NACO

    Full text link
    We describe a coronagraphic optic for use with CONICA at the VLT that provides suppression of diffraction from 1.8 to 7 lambda/D at 4.05 microns, an optimal wavelength for direct imaging of cool extrasolar planets. The optic is designed to provide 10 magnitudes of contrast at 0.2 arcseconds, over a D-shaped region in the image plane, without the need for any focal plane occulting mask.Comment: 9 pages, 5 figures, to appear in Proc. SPIE Vol. 773

    SPHERE IRDIS and IFS astrometric strategy and calibration

    Full text link
    We present the current results of the astrometric characterization of the VLT planet finder SPHERE over 2 years of on-sky operations. We first describe the criteria for the selection of the astrometric fields used for calibrating the science data: binaries, multiple systems, and stellar clusters. The analysis includes measurements of the pixel scale and the position angle with respect to the North for both near-infrared subsystems, the camera IRDIS and the integral field spectrometer IFS, as well as the distortion for the IRDIS camera. The IRDIS distortion is shown to be dominated by an anamorphism of 0.60+/-0.02% between the horizontal and vertical directions of the detector, i.e. 6 mas at 1". The anamorphism is produced by the cylindrical mirrors in the common path structure hence common to all three SPHERE science subsystems (IRDIS, IFS, and ZIMPOL), except for the relative orientation of their field of view. The current estimates of the pixel scale and North angle for IRDIS are 12.255+/-0.009 milliarcseconds/pixel for H2 coronagraphic images and -1.75+/-0.08 deg. Analyses of the IFS data indicate a pixel scale of 7.46+/-0.02 milliarcseconds/pixel and a North angle of -102.18+/-0.13 deg. We finally discuss plans for providing astrometric calibration to the SPHERE users outside the instrument consortium.Comment: 12 pages, 6 figures, 3 table

    Discovery of a Companion Candidate in the HD169142 Transition Disk and the Possibility of Multiple Planet Formation

    Get PDF
    We present L' and J-band high-contrast observations of HD169142, obtained with the VLT/NACO AGPM vector vortex coronagraph and the Gemini Planet Imager, respectively. A source located at 0".156+/-0".032 north of the host star (PA=7.4+/-11.3 degrees) appears in the final reduced L' image. At the distance of the star (~145 pc), this angular separation corresponds to a physical separation of 22.7+/-4.7 AU, locating the source within the recently resolved inner cavity of the transition disk. The source has a brightness of L'=12.2+/-0.5 mag, whereas it is not detected in the J band (J>13.8 mag). If its L' brightness arose solely from the photosphere of a companion and given the J-L' color constraints, it would correspond to a 28-32 MJupiter object at the age of the star, according to the COND models. Ongoing accretion activity of the star suggests, however, that gas is left in the inner disk cavity from which the companion could also be accreting. In this case the object could be lower in mass and its luminosity enhanced by the accretion process and by a circumplanetary disk. A lower mass object is more consistent with the observed cavity width. Finally, the observations enable us to place an upper limit on the L'-band flux of a second companion candidate orbiting in the disk annular gap at ~50 AU, as suggested by millimeter observations. If the second companion is also confirmed, HD169142 might be forming a planetary system, with at least two companions opening gaps and possibly interacting with each other.Comment: Accepted to ApJL, see also Biller et al. 201

    Deep Thermal Infrared Imaging of HR 8799 bcde: New Atmospheric Constraints and Limits on a Fifth Planet

    Full text link
    We present new LL^\prime (3.8 μm\mu m) and Br-α\alpha (4.05 μm\mu m) data and reprocessed archival LL^\prime data for the young, planet-hosting star HR 8799 obtained with Keck/NIRC2, VLT/NaCo and Subaru/IRCS. We detect all four HR 8799 planets in each dataset at a moderate to high signal-to-noise (SNR \gtrsim 6-15). We fail to identify a fifth planet, "HR 8799 f", at rr << 15 AUAU at a 5-σ\sigma confidence level: one suggestive, marginally significant residual at 0.2" is most likely a PSF artifact. Assuming companion ages of 30 MyrMyr and the Baraffe (Spiegel \& Burrows) planet cooling models, we rule out an HR 8799 f with mass of 5 MJM_{J} (7 MJM_{J}), 7 MJM_{J} (10 MJM_{J}), and 12 MJM_{J} (13 MJM_{J}) at rprojr_{proj} \sim 12 AUAU, 9 AUAU, and 5 AUAU, respectively. All four HR 8799 planets have red early T dwarf-like LL^\prime - [4.05] colors, suggesting that their SEDs peak in between the LL^\prime and MM^\prime broadband filters. We find no statistically significant difference in HR 8799 cde's colors. Atmosphere models assuming thick, patchy clouds appear to better match HR 8799 bcde's photometry than models assuming a uniform cloud layer. While non-equilibrium carbon chemistry is required to explain HR 8799 bc's photometry/spectra, evidence for it from HR 8799 de's photometry is weaker. Future, deep IR spectroscopy/spectrophotometry with the Gemini Planet Imager, SCExAO/CHARIS, and other facilities may clarify whether the planets are chemically similar or heterogeneous.Comment: 18 pages, 6 Tables, and 9 Figures. Fig. 1a is the key figure. Accepted for publication in Ap
    corecore