63 research outputs found

    Validity of wrist-worn consumer products to measure heart rate and energy expenditure

    Get PDF
    Introduction: The ability to monitor physical activity throughout the day and during various activities continues to improve with the development of wrist-worn monitors. However, the accuracy of wrist-worn monitors to measure both heart rate and energy expenditure during physical activity is still unclear. The purpose of this study was to determine the accuracy of several popular wrist-worn monitors at measuring heart rate and energy expenditure. Methods: Participants wore the TomTom Cardio, Microsoft Band and Fitbit Surge on randomly assigned locations on each wrist. The maximum number of monitors per wrist was two. The criteria used for heart rate and energy expenditure were a three-lead electrocardiogram and indirect calorimetry using a metabolic cart. Participants exercised on a treadmill at 3.2, 4.8, 6.4, 8 and 9.7 km/h for 3 minutes at each speed, with no rest between speeds. Heart rate and energy expenditure were manually recorded every minute throughout the protocol. Results: Mean absolute percentage error for heart rate varied from 2.17 to 8.06% for the Fitbit Surge, from 1.01 to 7.49% for the TomTom Cardio and from 1.31 to 7.37% for the Microsoft Band. The mean absolute percentage error for energy expenditure varied from 25.4 to 61.8% for the Fitbit Surge, from 0.4 to 26.6% for the TomTom Cardio and from 1.8 to 9.4% for the Microsoft Band. Conclusion: Data from these devices may be useful in obtaining an estimate of heart rate for everyday activities and general exercise, but energy expenditure from these devices may be significantly over- or underestimated

    Validity of Wrist-worn Physical Activity Monitors to Measure Heart Rate

    Get PDF
    Numerous physical activity monitors exist and are used to track and improve fitness levels. Due to the increasing popularity of these devices, newer products have been developed that measure heart rate (HR) at the wrist. Little is known about how accurate these devices are at measuring HR at the wrist and how they compare to each other. PURPOSE: To determine how accurately HR was measured by three different wrist-worn physical activity monitors. METHODS: Recreationally active men (n=9) and women (n=3) participated in this study. The average age and weight of participants was 22 ± 3 years and 73.9 ± 12 kg. TomTom Cardio (TT), Fitbit Surge (FB) and Microsoft Band (MB) physical activity monitors were used. The TT, FB, and MB were randomly assigned to the right or left wrist for each participant. The testing procedure included speeds of 2, 3, 4, 5, and 6 mph with each speed lasting three minutes. HR was measured by electrocardiography (ECG) using standard limb lead II and by the three different physical activity monitors. HR was recorded from each device every minute throughout the duration of the procedure. Pearson product moment correlations and bias between electrocardiography (ECG) and physical activity monitors with 95% limits of agreement (Bland-Altman analysis) were calculated. Repeated measures ANOVA [Speed x Device] were also calculated. Statistical significance was set at pRESULTS: At 2 mph and 3 mph, only TT HR was significantly correlated with ECG heart rate (r=0.693, p=0.012 and r=0.592, p=0.043). At 4 mph and 6 mph TT was significantly correlated with ECG (r=0.911, pCONCLUSION: With increasing speeds, physical activity monitors more accurately measure HR but individuals should be aware that these devices may overestimate HR during slower walking speeds

    Controlling the mode of operation of organic transistors through side-chain engineering

    Get PDF
    Electrolyte-gated organic transistors offer low bias operation facilitated by direct contact of the transistor channel with an electrolyte. Their operation mode is generally defined by the dimensionality of charge transport, where a field-effect transistor allows for electrostatic charge accumulation at the electrolyte/semiconductor interface, whereas an organic electrochemical transistor (OECT) facilitates penetration of ions into the bulk of the channel, considered a slow process, leading to volumetric doping and electronic transport. Conducting polymer OECTs allow for fast switching and high currents through incorporation of excess, hygroscopic ionic phases, but operate in depletion mode. Here, we show that the use of glycolated side chains on a thiophene backbone can result in accumulation mode OECTs with high currents, transconductance, and sharp subthreshold switching, while maintaining fast switching speeds. Compared with alkylated analogs of the same backbone, the triethylene glycol side chains shift the mode of operation of aqueous electrolyte-gated transistors from interfacial to bulk doping/transport and show complete and reversible electrochromism and high volumetric capacitance at low operating biases. We propose that the glycol side chains facilitate hydration and ion penetration, without compromising electronic mobility, and suggest that this synthetic approach can be used to guide the design of organic mixed conductors

    N-type organic electrochemical transistors with stability in water.

    Get PDF
    Organic electrochemical transistors (OECTs) are receiving significant attention due to their ability to efficiently transduce biological signals. A major limitation of this technology is that only p-type materials have been reported, which precludes the development of complementary circuits, and limits sensor technologies. Here, we report the first ever n-type OECT, with relatively balanced ambipolar charge transport characteristics based on a polymer that supports both hole and electron transport along its backbone when doped through an aqueous electrolyte and in the presence of oxygen. This new semiconducting polymer is designed specifically to facilitate ion transport and promote electrochemical doping. Stability measurements in water show no degradation when tested for 2 h under continuous cycling. This demonstration opens the possibility to develop complementary circuits based on OECTs and to improve the sophistication of bioelectronic devices

    Thermodynamic analysis of 5′ and 3′ single- and 3′ double-nucleotide overhangs neighboring wobble terminal base pairs

    Get PDF
    Thermodynamic parameters are reported for duplex formation of 40 self-complementary RNA duplexes containing wobble terminal base pairs with all possible 3′ single and double-nucleotide overhangs, mimicking the structures of short interfering RNAs (siRNA) and microRNAs (miRNA). Based on nearest neighbor analysis, the addition of a single 3′ dangling nucleotide increases the stability of duplex formation up to 1 kcal/mol in a sequence-dependent manner. The addition of a second dangling nucleotide increases the stability of duplexes closed with wobble base pairs in an idiosyncratic manner. The results allow for the development of a nearest neighbor model, which improves the predication of free energy and melting temperature for duplexes closed by wobble base pairs with 3′ single or double-nucleotide overhangs. Phylogenetic analysis of naturally occurring miRNAs was performed. Selection of the effector miR strand of the mature miRNA duplex appears to be dependent on the orientation of the GU closing base pair rather than the identity of the 3′ double-nucleotide overhang. Thermodynamic parameters for the 5′ single terminal overhangs adjacent to wobble closing base pairs are also presented

    The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes.

    Get PDF
    We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains

    4,4-dimethyl-5-alpha-ergosta-8,24(28)-dien-3-beta-ol From the Fungus Marasmius-oreades

    No full text
    From the fruit body of the fungus Marasmius oreades (family Tricholomataceae), 4,4-dimethyl-5-alpha-ergosta-8,24(28)-dien-3-beta-ol (1), probably a biogenetic precursor of ergosterol, has been isolated along with ergosterol. Its stereostructure has been established unequivocally by spectroscopic methods, including C-13 nuclear magnetic resonance

    Smart data management with BIM and AR in Malaysia

    No full text
    Actually, many researchers are fusing on Building Information Modelling (BIM) for data management of the architectural heritage. BIM method is based on a 3D parametric model where users can add heterogeneous data. The Malaysian architectural heritage has been analyzed through an archival research, a photographic/drone survey to investigate new and cheaper technologies for points cloud. This paper aims to show a multidisciplinary methodology for the existing buildings’ refurbishment. Augmented Reality (AR) is also used for the data visualization to develop smart cities in Malaysia
    corecore