128 research outputs found

    Management and prevention of post-transplant malignancies in kidney transplant recipients

    Get PDF
    The central issue in organ transplantation remains suppression of allograft rejection. Thus, the development of immunosuppressive drugs has been the key to successful allograft function. The increased immunosuppressive efficiency obtained in the last two decades in kidney transplantation dramatically reduced the incidence of acute rejection. However, the inevitable trade-off was an increased rate of post-transplant infections and malignancies. Since the incidence of cancer in immunosuppressed transplant recipients becomes greater over time, and the introduction of new immunosuppressive strategies are expected to extend significantly allograft survival, the problem might grow exponentially in the near future. Thus, cancer is becoming a major cause of morbidity and mortality in patients otherwise successfully treated by organ transplantation. There are at least four distinct areas requiring consideration, which have a potentially serious impact on recipient outcome after transplantation: (i) the risk of transmitting a malignancy to the recipient within the donor organ; (ii) the problems of previously diagnosed and treated malignancy in the recipient; (iii) the prevention of de novo post-transplant malignant diseases and (iv) the management of these complex and often life-threatening clinical problems. In this scenario, the direct and indirect oncogenic potential of immunosuppressive therapy should be always carefully considered

    Proteomics Insights into Medullary Sponge Kidney Disease: Review of the Recent Results of an Italian Research Collaborative Network

    Get PDF
    Background: Medullary sponge kidney (MSK) disease is a rare and neglected congenital condition typically associated with nephrocalcinosis/nephrolithiasis, urinary concentration defects, and cystic anomalies in the precalyceal ducts that, although sporadic in the general population, is relatively frequent in renal stone formers. The physiopathologic mechanism associated with this disease is not fully understood, and omics technologies may help address this gap. Summary: The aim of this review was to provide an overview of the current state of the application of proteomics in the study of this rare disease. In particular, we focused on the results of our recent Italian collaborative studies that, analyzing the MSK whole and extracellular vesicle urinary content by mass spectrometry, have displayed the existence of a large and multifactorial MSK-associated biological machinery and identified some main regulatory biological elements able to discriminate patients affected by this rare disorder from those with idiopathic calcium nephrolithiasis and autosomal dominant polycystic kidney disease (including laminin subunit alpha 2, ficolin 1, mannan-binding lectin serine protease 2, complement component 4-binding protein β, sphingomyelin, ephrins). Key Messages: The application of omics technologies has provided new insights into the comprehension of the physiopathology of the MSK disease and identified novel potential diagnostic biomarkers that may replace in future expensive and invasive radiological tests (including CT) and select novel therapeutic targets potentially employable, whether validated in a large cohort of patients, in the daily clinical practice

    Management of patients with a failed kidney transplant: what should we do?

    Get PDF
    Abstract The number of kidney transplant recipients returning to dialysis after graft failure is steadily increasing over time. Patients with a failed kidney transplant have been shown to have a significant increase in mortality compared with patients with a functioning graft or patients initiating dialysis for the first time. Moreover, the risk for infectious complications, cardiovascular disease and malignancy is greater than in the dialysis population due to the frequent maintenance of low-dose immunosuppression, which is required to reduce the risk of allosensitization, particularly in patients with the prospect of retransplantation from a living donor. The management of these patients present several controversial opinions and clinical guidelines are lacking. This article aims to review the leading evidence on the main issues in the management of patients with failed transplant, including the ideal timing and modality of dialysis reinitiation, the indications for an allograft nephrectomy or the correct management of immunosuppression during graft failure. In summary, retransplantation is a feasible option that should be considered in patients with graft failure and may help to minimize the morbidity and mortality risk associated with dialysis reinitiation

    Recurrence of immunoglobulin A nephropathy after kidney transplantation: a narrative review on incidence, risk factors, pathophysiology and management of immunosuppressive therapy

    Get PDF
    Abstract Glomerulonephritis (GN) is the underlying cause of end-stage renal failure in 30–50% of kidney transplant recipients. It represents the primary cause of end-stage renal disease for 25% of the dialysis population and 45% of the transplant population. For patients with GN requiring renal replacement therapy, kidney transplantation is associated with superior outcomes compared with dialysis. Recurrent GN was previously considered to be a minor contributor to graft loss, but with the prolongation of graft survival, the effect of recurrent disease on graft outcome assumes increasing importance. Thus the extent of recurrence of original kidney disease after kidney transplantation has been underestimated for several reasons. This review aims to provide updated knowledge on one particular recurrent renal disease after kidney transplantation, immunoglobulin A nephropathy (IgAN). IgAN is one of the most common GNs worldwide. The pathogenesis of IgAN is complex and remains incompletely understood. Evidence to date is most supportive of a several hit hypothesis. Biopsy is mandatory not only to diagnose the disease in the native kidney, but also to identify and characterize graft recurrence of IgAN in the kidney graft. The optimal therapy for IgAN recurrence in the renal graft is unknown. Supportive therapy aiming to reduce proteinuria and control hypertension is the mainstream, with corticosteroids and immunosuppressive treatment tailored for certain subgroups of patients experiencing a rapidly progressive course of the disease with active lesions on renal biopsy and considering safety issues related to infectious complications

    Molecular Mechanisms of AKI in the Elderly: From Animal Models to Therapeutic Intervention

    Get PDF
    Acute kidney injury (AKI), a critical syndrome characterized by a sudden reduction of renal function, is a common disorder among elderly patients particularly in Intensive Care Unit (ICU). AKI is closely associated with both short- and long-term mortality and length of hospital stay and is considered a predictor of chronic kidney disease (CKD). Specific hemodynamic, metabolic, and molecular changes lead to increased susceptibility to injury in the aged kidney; therefore, certain causes of AKI such as the prerenal reduction in renal perfusion or vascular obstructive conditions are more common in the elderly; moreover, AKI is often multifactorial and iatrogenic. Older patients present several comorbidities (diabetes, hypertension, heart failure) and are exposed to multiple medical interventions such as the use of nephrotoxic contrasts media and medications, which can also trigger AKI. Considering the emerging relevance of this condition, prevention and treatment of AKI in the elderly should be crucial in the internist and emergency setting. This review article summarizes the incidence, the risk factors, the pathophysiology, the molecular mechanisms and the strategies of prevention and treatment of AKI in elderly patients

    Sirolimus and Everolimus Pathway: Reviewing Candidate Genes Influencing Their Intracellular Effects

    Get PDF
    Sirolimus (SRL) and everolimus (EVR) are mammalian targets of rapamycin inhibitors (mTOR-I) largely employed in renal transplantation and oncology as immunosuppressive/antiproliferative agents. SRL was the first mTOR-I produced by the bacterium Streptomyces hygroscopicus and approved for several medical purposes. EVR, derived from SRL, contains a 2-hydroxy-ethyl chain in the 40th position that makes the drug more hydrophilic than SRL and increases oral bioavailability. Their main mechanism of action is the inhibition of the mTOR complex 1 and the regulation of factors involved in a several crucial cellular functions including: protein synthesis, regulation of angiogenesis, lipid biosynthesis, mitochondrial biogenesis and function, cell cycle, and autophagy. Most of the proteins/enzymes belonging to the aforementioned biological processes are encoded by numerous and tightly regulated genes. However, at the moment, the polygenic influence on SRL/EVR cellular effects is still not completely defined, and its comprehension represents a key challenge for researchers. Therefore, to obtain a complete picture of the cellular network connected to SRL/EVR, we decided to review major evidences available in the literature regarding the genetic influence on mTOR-I biology/pharmacology and to build, for the first time, a useful and specific "SRL/EVR genes-focused pathway", possibly employable as a starting point for future in-depth research projects

    Modulation of complement activation by pentraxin-3 in prostate cancer.

    Get PDF
    Pentraxin 3 (PTX3) is an essential component of the innate immune system and a recognized modulator of Complement cascade. The role of Complement system in the pathogenesis of prostate cancer has been largely underestimated. The aim of our study was to investigate the role of PTX3 as possible modulator of Complement activation in the development of this neoplasia. We performed a single center cohort study; from January 2017 through December 2018, serum and prostate tissue samples were obtained from 620 patients undergoing prostate biopsy. A group of patients with benign prostatic hyperplasia (BPH) underwent a second biopsy within 12-36 months demonstrating the presence of a prostate cancer (Group A, n = 40) or confirming the diagnosis of BPH (Group B, N = 40). We measured tissue PTX3 protein expression together with complement activation by confocal microscopy in the first and second biopsy in group A and B patients. We confirmed that that PTX3 tissue expression in the first biopsy was increased in group A compared to group B patients. C1q deposits were extensively present in group A patients co-localizing and significantly correlating with PTX3 deposits; on the contrary, C1q/PTX3 deposits were negative in group B. Moreover, we found a significantly increased expression of C3a and C5a receptors within resident cells in group A patient. Interestingly, C1q/PTX3 deposits were not associated with activation of the terminal Complement complex C5b-9; moreover, we found a significant increase of Complement inhibitor CD59 in cancer tissue. Our data indicate that PTX3 might play a significant pathogenic role in the development of this neoplasia through recruitment of the early components of Complement cascade with hampered activation of terminal Complement pathway associated with the upregulation of CD59. This alteration might lead to the PTX3-mediated promotion of cellular proliferation, angiogenesis and insensitivity to apoptosis possible leading to cancer cell invasion and migration

    Recent advances in molecular mechanisms of acute kidney injury in patients with diabetes mellitus

    Get PDF
    Several insults can lead to acute kidney injury (AKI) in native kidney and transplant patients, with diabetes critically contributing as pivotal risk factor. High glucose per se can disrupt several signaling pathways within the kidney that, if not restored, can favor the instauration of mechanisms of maladaptive repair, altering kidney homeostasis and proper function. Diabetic kidneys frequently show reduced oxygenation, vascular damage and enhanced inflammatory response, features that increase the kidney vulnerability to hypoxia. Importantly, epidemiologic data shows that previous episodes of AKI increase susceptibility to diabetic kidney disease (DKD), and that patients with DKD and history of AKI have a generally worse prognosis compared to DKD patients without AKI; it is therefore crucial to monitor diabetic patients for AKI. In the present review, we will describe the causes that contribute to increased susceptibility to AKI in diabetes, with focus on the molecular mechanisms that occur during hyperglycemia and how these mechanisms expose the different types of resident renal cells to be more vulnerable to maladaptive repair during AKI (contrast- and drug-induced AKI). Finally, we will review the list of the existing candidate biomarkers of diagnosis and prognosis of AKI in patients with diabetes
    • …
    corecore