10 research outputs found
Manual and semi-automated approaches to MIBG myocardial scintigraphy in patients with Parkinson’s disease
OBJECTIVE: This study investigates the effects of manual and semi-automatic methods for assessing MIBG semi-quantitative indices in a clinical setting. MATERIALS AND METHODS: We included (123)I-MIBG scans obtained in 35 patients with idiopathic Parkinson’s Disease. Early and late heart-to-mediastinum (H/M) ratios were calculated from (123)I-MIBG images using regions of interest (ROIs) placed over the heart and the mediastinum. The ROIs were derived using two approaches: (i) manually drawn and (ii) semi-automatic fixed-size ROIs using anatomical landmarks. Expert, moderate-expert, and not expert raters applied the ROIs procedures and interpreted the (123)I-MIBG images. We evaluated the inter and intra-rater agreements in assessing (123)I-MIBG H/M ratios. RESULTS: A moderate agreement in the raters’ classification of pathological and non-pathological scores emerged regarding early and late H/M ratio values (κ = 0.45 and 0.69 respectively), applying the manual method, while the early and late H/M ratios obtained with the semi-automatic method reached a good agreement among observers (κ = 0.78). Cohen-Kappa values revealed that the semi-automatic method improved the agreement between expert and inexpert raters: the agreement improved from a minimum of 0.29 (fair, for early H/M) and 0.69 (substantial, in late H/M) with the manual method, to 0.90 (perfect, in early H/M) and 0.87 (perfect, in late H/M) with the semi-automatic method. CONCLUSION: The use of the semi-automatic method improves the agreement among raters in classifying’ H/M ratios as pathological or non-pathological, namely for inexpert readers. These results have important implications for semi-quantitative assessment of (123)I-MIBG images in clinical routine
Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting
Diagnostic accuracy in FDG-PET imaging highly depends on the operating procedures. In this clinical study on dementia, we compared the diagnostic accuracy at a single-subject level of a) Clinical Scenarios, b) Standard FDG Images and c) Statistical Parametrical (SPM) Maps generated via a new optimized SPM procedure. We evaluated the added value of FDG-PET, either Standard FDG Images or SPM Maps, to Clinical Scenarios. In 88 patients with neurodegenerative diseases (Alzheimer's Disease—AD, Frontotemporal Lobar Degeneration—FTLD, Dementia with Lewy bodies—DLB and Mild Cognitive Impairment—MCI), 9 neuroimaging experts made a forced diagnostic decision on the basis of the evaluation of the three types of information. There was also the possibility of a decision of normality on the FDG-PET images. The clinical diagnosis confirmed at a long-term follow-up was used as the gold standard. SPM Maps showed higher sensitivity and specificity (96% and 84%), and better diagnostic positive (6.8) and negative (0.05) likelihood ratios compared to Clinical Scenarios and Standard FDG Images. SPM Maps increased diagnostic accuracy for differential diagnosis (AD vs. FTD; beta 1.414, p = 0.019). The AUC of the ROC curve was 0.67 for SPM Maps, 0.57 for Clinical Scenarios and 0.50 for Standard FDG Images. In the MCI group, SPM Maps showed the highest predictive prognostic value (mean LOC = 2.46), by identifying either normal brain metabolism (exclusionary role) or hypometabolic patterns typical of different neurodegenerative conditions
Clinical features and outcomes of elderly hospitalised patients with chronic obstructive pulmonary disease, heart failure or both
Background and objective: Chronic obstructive pulmonary disease (COPD) and heart failure (HF) mutually increase the risk of being present in the same patient, especially if older. Whether or not this coexistence may be associated with a worse prognosis is debated. Therefore, employing data derived from the REPOSI register, we evaluated the clinical features and outcomes in a population of elderly patients admitted to internal medicine wards and having COPD, HF or COPD + HF. Methods: We measured socio-demographic and anthropometric characteristics, severity and prevalence of comorbidities, clinical and laboratory features during hospitalization, mood disorders, functional independence, drug prescriptions and discharge destination. The primary study outcome was the risk of death. Results: We considered 2,343 elderly hospitalized patients (median age 81 years), of whom 1,154 (49%) had COPD, 813 (35%) HF, and 376 (16%) COPD + HF. Patients with COPD + HF had different characteristics than those with COPD or HF, such as a higher prevalence of previous hospitalizations, comorbidities (especially chronic kidney disease), higher respiratory rate at admission and number of prescribed drugs. Patients with COPD + HF (hazard ratio HR 1.74, 95% confidence intervals CI 1.16-2.61) and patients with dementia (HR 1.75, 95% CI 1.06-2.90) had a higher risk of death at one year. The Kaplan-Meier curves showed a higher mortality risk in the group of patients with COPD + HF for all causes (p = 0.010), respiratory causes (p = 0.006), cardiovascular causes (p = 0.046) and respiratory plus cardiovascular causes (p = 0.009). Conclusion: In this real-life cohort of hospitalized elderly patients, the coexistence of COPD and HF significantly worsened prognosis at one year. This finding may help to better define the care needs of this population
Manual and semi-automated approaches to MIBG myocardial scintigraphy in patients with Parkinson’s disease
Objective: This study investigates the effects of manual and semi-automatic methods for assessing MIBG semi-quantitative indices in a clinical setting. Materials and methods: We included 123I-MIBG scans obtained in 35 patients with idiopathic Parkinson’s Disease. Early and late heart-to-mediastinum (H/M) ratios were calculated from 123I-MIBG images using regions of interest (ROIs) placed over the heart and the mediastinum. The ROIs were derived using two approaches: (i) manually drawn and (ii) semi-automatic fixed-size ROIs using anatomical landmarks. Expert, moderate-expert, and not expert raters applied the ROIs procedures and interpreted the 123I-MIBG images. We evaluated the inter and intra-rater agreements in assessing 123I-MIBG H/M ratios. Results: A moderate agreement in the raters’ classification of pathological and non-pathological scores emerged regarding early and late H/M ratio values (κ = 0.45 and 0.69 respectively), applying the manual method, while the early and late H/M ratios obtained with the semi-automatic method reached a good agreement among observers (κ = 0.78). Cohen-Kappa values revealed that the semi-automatic method improved the agreement between expert and inexpert raters: the agreement improved from a minimum of 0.29 (fair, for early H/M) and 0.69 (substantial, in late H/M) with the manual method, to 0.90 (perfect, in early H/M) and 0.87 (perfect, in late H/M) with the semi-automatic method. Conclusion: The use of the semi-automatic method improves the agreement among raters in classifying’ H/M ratios as pathological or non-pathological, namely for inexpert readers. These results have important implications for semi-quantitative assessment of 123I-MIBG images in clinical routine
Brain metabolic signatures across the Alzheimer's disease spectrum.
PURPOSE: Given the challenges posed by the clinical diagnosis of atypical Alzheimer's disease (AD) variants and the limited imaging evidence available in the prodromal phases of atypical AD, we assessed brain hypometabolism patterns at the single-subject level in the AD variants spectrum. Specifically, we tested the accuracy of [(18)F]FDG-PET brain hypometabolism, as a biomarker of neurodegeneration, in supporting the differential diagnosis of atypical AD variants in individuals with dementia and mild cognitive impairment (MCI). METHODS: We retrospectively collected N = 67 patients with a diagnosis of typical AD and AD variants according to the IWG-2 criteria (22 typical-AD, 15 frontal variant-AD, 14 logopenic variant-AD and 16 posterior variant-AD). Further, we included N = 11 MCI subjects, who subsequently received a clinical diagnosis of atypical AD dementia at follow-up (21 ± 11 months). We assessed brain hypometabolism patterns at group- and single-subject level, using W-score maps, measuring their accuracy in supporting differential diagnosis. In addition, the regional prevalence of cerebral hypometabolism was computed to identify the most vulnerable core regions. RESULTS: W-score maps pointed at distinct, specific patterns of hypometabolism in typical and atypical AD variants, confirmed by the assessment of core hypometabolism regions, showing that each variant was characterized by specific regional vulnerabilities, namely in occipital, left-sided, or frontal brain regions. ROC curves allowed discrimination among AD variants and also non-AD dementia (i.e., dementia with Lewy bodies and behavioral variant of frontotemporal dementia), with high sensitivity and specificity. Notably, we provide preliminary evidence that, even in AD prodromal phases, these specific [(18)F]FDG-PET patterns are already detectable and predictive of clinical progression to atypical AD variants at follow-up. CONCLUSIONS: The AD variant-specific patterns of brain hypometabolism, highly consistent at single-subject level and already evident in the prodromal stages, represent relevant markers of disease neurodegeneration, with highly supportive diagnostic and prognostic role
FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort.
BACKGROUND/AIMS: In this multicentre study in clinical settings, we assessed the accuracy of optimized procedures for FDG-PET brain metabolism and CSF classifications in predicting or excluding the conversion to Alzheimer's disease (AD) dementia and non-AD dementias. METHODS: We included 80 MCI subjects with neurological and neuropsychological assessments, FDG-PET scan and CSF measures at entry, all with clinical follow-up. FDG-PET data were analysed with a validated voxel-based SPM method. Resulting single-subject SPM maps were classified by five imaging experts according to the disease-specific patterns, as "typical-AD", "atypical-AD" (i.e. posterior cortical atrophy, asymmetric logopenic AD variant, frontal-AD variant), "non-AD" (i.e. behavioural variant FTD, corticobasal degeneration, semantic variant FTD; dementia with Lewy bodies) or "negative" patterns. To perform the statistical analyses, the individual patterns were grouped either as "AD dementia vs. non-AD dementia (all diseases)" or as "FTD vs. non-FTD (all diseases)". Aβ42, total and phosphorylated Tau CSF-levels were classified dichotomously, and using the Erlangen Score algorithm. Multivariate logistic models tested the prognostic accuracy of FDG-PET-SPM and CSF dichotomous classifications. Accuracy of Erlangen score and Erlangen Score aided by FDG-PET SPM classification was evaluated. RESULTS: The multivariate logistic model identified FDG-PET "AD" SPM classification (Expβ = 19.35, 95% C.I. 4.8-77.8, p < 0.001) and CSF Aβ42 (Expβ = 6.5, 95% C.I. 1.64-25.43, p < 0.05) as the best predictors of conversion from MCI to AD dementia. The "FTD" SPM pattern significantly predicted conversion to FTD dementias at follow-up (Expβ = 14, 95% C.I. 3.1-63, p < 0.001). Overall, FDG-PET-SPM classification was the most accurate biomarker, able to correctly differentiate either the MCI subjects who converted to AD or FTD dementias, and those who remained stable or reverted to normal cognition (Expβ = 17.9, 95% C.I. 4.55-70.46, p < 0.001). CONCLUSIONS: Our results support the relevant role of FDG-PET-SPM classification in predicting progression to different dementia conditions in prodromal MCI phase, and in the exclusion of progression, outperforming CSF biomarkers
Brain Metabolism and Amyloid Load in Individuals With Subjective Cognitive Decline or Pre-Mild Cognitive Impairment
Background and objective: Multicenter study aiming at investigating the characteristics of cognitive decline, neuropsychiatric symptoms, and brain imaging in individuals with subjective cognitive decline (SCD) and subtle cognitive decline (pre-Mild Cognitive Impairment, pre-MCI).
Methods: Data were obtained from the Network-AD project (NET-2011-02346784). The included subjects underwent baseline cognitive and neurobehavioral evaluation, FDG-PET, and, amyloid-PET. We used Principal Component Analysis (PCA) to identify independent neuropsychological and neuropsychiatric dimensions and their association with brain metabolism.
Results: A total of 105 subjects (SCD=49, pre-MCI=56) were included. FDG-PET was normal in 45% of subjects and revealed brain hypometabolism in 55%, with a frontal-like pattern as the most frequent finding (28%). Neuropsychiatric symptoms emerging from the Neuropsychiatric Inventory and the Starkstein Apathy Scale were highly prevalent in the whole sample (78%). An abnormal amyloid load was detected in the 18% of the subjects that underwent amyloid-PET (n=60). PCA resulted in three neuropsychological factors: 1) executive/visuo-motor, correlating with hypometabolism in frontal, occipital cortices and basal ganglia; 2) memory, correlating with hypometabolism in temporo-parietal regions; 3) visuo-spatial/constructional, correlating with hypometabolism in fronto-parietal cortices. Two factors emerged from the neuropsychiatric PCA: 1) affective, correlating with hypometabolism in orbito-frontal, cingulate cortex, insula; 2) hyperactive/psychotic, correlating with hypometabolism in frontal, temporal and parietal regions.
Discussion: FDG-PET evidence suggests either normal brain function or different patterns of brain hypometabolism in SCD and pre-MCI subjects. These results indicate that SCD and pre-MCI represent heterogeneous populations. Consistently, different neuropsychological and neuropsychiatric profiles emerged, which correlated with neuronal dysfunction in specific brain regions. Long-term follow-up studies are needed to assess the risk of progression to dementia in these conditions.</p
Simultaneous PET-MRI studies of the concordance of atrophy and hypometabolism in syndromic variants of Alzheimer's disease and frontotemporal dementia: an extended case series
Background: Simultaneous PET-MRI is used to compare patterns of cerebral hypometabolism and atrophy in six different dementia syndromes. Objectives: The primary objective was to conduct an initial exploratory study regarding the concordance of atrophy and hypometabolism in syndromic variants of Alzheimer's disease (AD) and frontotemporal dementia (FTD). The secondary objective was to determine the effect of image analysis methods on determination of atrophy and hypometabolism. Method: PET and MRI data were acquired simultaneously on 24 subjects with six variants of AD and FTD (n = 4 per group). Atrophy was rated visually and also quantified with measures of cortical thickness. Hypometabolism was rated visually and also quantified using atlas-and SPM-based approaches. Concordance was measured using weighted Cohen's kappa. Results: Atrophy-hypometabolism concordance differed markedly between patient groups; kappa scores ranged from 0.13 (nonfluent/agrammatic variant of primary progressive aphasia, nfvPPA) to 0.49 (posterior cortical variant of AD, PCA). Heterogeneity was also observed within groups; the confidence intervals of kappa scores ranging from 00.25 for PCA to 0.290.61 for nfvPPA. More widespread MRI and PET changes were identified using quantitative methods than on visual rating. Conclusion: The marked differences in concordance identified in this initial study may reflect differences in the molecular pathologies underlying AD and FTD syndromic variants but also operational differences in the methods used to diagnose these syndromes. The superior ability of quantitative methodologies to detect changes on PET and MRI, if confirmed on larger cohorts, may favor their usage over qualitative visual inspection in future clinical diagnostic practice
FDG-PET and CSF biomarker accuracy in prediction of conversion to different dementias in a large multicentre MCI cohort
Background/aims: In this multicentre study in clinical settings, we assessed the accuracy of optimized procedures for FDG-PET brain metabolism and CSF classifications in predicting or excluding the conversion to Alzheimer's disease (AD) dementia and non-AD dementias. Methods: We included 80 MCI subjects with neurological and neuropsychological assessments, FDG-PET scan and CSF measures at entry, all with clinical follow-up. FDG-PET data were analysed with a validated voxel-based SPM method. Resulting single-subject SPM maps were classified by five imaging experts according to the disease-specific patterns, as “typical-AD”, “atypical-AD” (i.e. posterior cortical atrophy, asymmetric logopenic AD variant, frontal-AD variant), “non-AD” (i.e. behavioural variant FTD, corticobasal degeneration, semantic variant FTD; dementia with Lewy bodies) or “negative” patterns. To perform the statistical analyses, the individual patterns were grouped either as “AD dementia vs. non-AD dementia (all diseases)” or as “FTD vs. non-FTD (all diseases)”. Aβ42, total and phosphorylated Tau CSF-levels were classified dichotomously, and using the Erlangen Score algorithm. Multivariate logistic models tested the prognostic accuracy of FDG-PET-SPM and CSF dichotomous classifications. Accuracy of Erlangen score and Erlangen Score aided by FDG-PET SPM classification was evaluated. Results: The multivariate logistic model identified FDG-PET “AD” SPM classification (Expβ = 19.35, 95% C.I. 4.8–77.8, p < 0.001) and CSF Aβ42 (Expβ = 6.5, 95% C.I. 1.64–25.43, p < 0.05) as the best predictors of conversion from MCI to AD dementia. The “FTD” SPM pattern significantly predicted conversion to FTD dementias at follow-up (Expβ = 14, 95% C.I. 3.1–63, p < 0.001). Overall, FDG-PET-SPM classification was the most accurate biomarker, able to correctly differentiate either the MCI subjects who converted to AD or FTD dementias, and those who remained stable or reverted to normal cognition (Expβ = 17.9, 95% C.I. 4.55–70.46, p < 0.001). Conclusions: Our results support the relevant role of FDG-PET-SPM classification in predicting progression to different dementia conditions in prodromal MCI phase, and in the exclusion of progression, outperforming CSF biomarkers. Keywords: Alzheimer's disease dementia, Clinical setting, Erlangen Score, Frontotemporal dementia, Prognosi
Antihypertensive treatment changes and related clinical outcomes in older hospitalized patients
Background: Hypertension management in older patients represents a challenge, particularly when hospitalized. Objective: The objective of this study is to investigate the determinants and related outcomes of antihypertensive drug prescription in a cohort of older hospitalized patients. Methods: A total of 5671 patients from REPOSI (a prospective multicentre observational register of older Italian in-patients from internal medicine or geriatric wards) were considered; 4377 (77.2%) were hypertensive. Minimum treatment (MT) for hypertension was defined according to the 2018 ESC guidelines [an angiotensin-converting-enzyme-inhibitor (ACE-I) or an angiotensin-receptor-blocker (ARB) with a calcium-channel-blocker (CCB) and/or a thiazide diuretic; if >80 years old, an ACE-I or ARB or CCB or thiazide diuretic]. Determinants of MT discontinuation at discharge were assessed. Study outcomes were any cause rehospitalization/all cause death, all-cause death, cardiovascular (CV) hospitalization/death, CV death, non-CV death, evaluated according to the presence of MT at discharge. Results: Hypertensive patients were older than normotensives, with a more impaired functional status, higher burden of comorbidity and polypharmacy. A total of 2233 patients were on MT at admission, 1766 were on MT at discharge. Discontinuation of MT was associated with the presence of comorbidities (lower odds for diabetes, higher odds for chronic kidney disease and dementia). An adjusted multivariable logistic regression analysis showed that MT for hypertension at discharge was associated with lower risk of all-cause death, all-cause death/hospitalization, CV death, CV death/hospitalization and non-CV death. Conclusions: Guidelines-suggested MT for hypertension at discharge is associated with a lower risk of adverse clinical outcomes. Nevertheless, changes in antihypertensive treatment still occur in a significant proportion of older hospitalized patients