233 research outputs found
Exactly quantized dynamics of classical incommensurate sliders
We report peculiar velocity quantization phenomena in the classical motion of
an idealized 1D solid lubricant, consisting of a harmonic chain interposed
between two periodic sliders. The ratio v_cm/v_ext of the chain center-of-mass
velocity to the externally imposed relative velocity of the sliders stays
pinned to exact "plateau" values for wide ranges of parameters, such as sliders
corrugation amplitudes, external velocity, chain stiffness and dissipation, and
is strictly determined by the commensurability ratios alone. The phenomenon is
explained by one slider rigidly dragging the kinks that the chain forms with
the other slider. Possible consequences of these results for some real systems
are discussed.Comment: 5 pags 4 fig
Interface and Composition Analysis on Perovskite Solar Cells.
Organometal halide (hybrid) perovskite solar cells have been fabricated following four different deposition procedures and investigated in order to find correlations between the solar cell characteristics/performance and their structure and composition as determined by combining depth-resolved imaging with time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), and analytical scanning transmission electron microscopy (STEM). The interface quality is found to be strongly affected by the perovskite deposition procedure, and in particular from the environment where the conversion of the starting precursors into the final perovskite is performed (air, nitrogen, or vacuum). The conversion efficiency of the precursors into the hybrid perovskite layer is compared between the different solar cells by looking at the ToF-SIMS intensities of the characteristic molecular fragments from the perovskite and the precursor materials. Energy dispersive X-ray spectroscopy in the STEM confirms the macroscopic ToF-SIMS findings and allows elemental mapping with nanometer resolution. Clear evidence for iodine diffusion has been observed and related to the fabrication procedure.We acknowledge Lucio Cinà, Simone Casaluci, Stefano Razza and Narges Yaghoobi Nia for the technical support, “Polo Solare Organico” Regione Lazio, the “DSSCX” MIUR-PRIN2010 and FP7 ITN “Destiny” for funds. G.D., S.C. and C.D. acknowledge funding from ERC under grant number 259619 PHOTO EM. C.D. acknowledges financial support from the EU under grant number 312483 ESTEEM2.This is the final version of the article. It was first available from ACS via http://dx.doi.org/10.1021/acsami.5b0803
In Situ Heat-Induced Replacement of GaAs Nanowires by Au.
Here we report on the heat-induced solid-state replacement of GaAs by Au in nanowires. Such replacement of semiconductor nanowires by metals is envisioned as a method to achieve well-defined junctions within nanowires. To better understand the mechanisms and dynamics that govern the replacement reaction, we performed in situ heating studies using high-resolution scanning transmission electron microscopy. The dynamic evolution of the phase boundary was investigated, as well as the crystal structure and orientation of the different phases at reaction temperatures. In general, the replacement proceeds one GaAs(111) bilayer at a time, and no fixed epitaxial relation could be found between the two phases. The relative orientation of the phases affects the replacement dynamics and can induce growth twins in the Au nanowire phase. In the case of a limited Au supply, the metal phase can also become liquid.The Research Council of Norway is acknowledged for the support to the Norwegian Micro- and Nano-Fabrication Facility, NorFab (197411/V30), the FRINATEK program (214235), and the NORTEM project (197405). G.D. and C.D. acknowledge funding from ERC under Grant 259619 PHOTO EM. C.D. acknowledges financial support from the EU under Grant 312483 ESTEEM2
Fully inkjet-printed two-dimensional material field-effect heterojunctions for wearable and textile electronics.
Fully printed wearable electronics based on two-dimensional (2D) material heterojunction structures also known as heterostructures, such as field-effect transistors, require robust and reproducible printed multi-layer stacks consisting of active channel, dielectric and conductive contact layers. Solution processing of graphite and other layered materials provides low-cost inks enabling printed electronic devices, for example by inkjet printing. However, the limited quality of the 2D-material inks, the complexity of the layered arrangement, and the lack of a dielectric 2D-material ink able to operate at room temperature, under strain and after several washing cycles has impeded the fabrication of electronic devices on textile with fully printed 2D heterostructures. Here we demonstrate fully inkjet-printed 2D-material active heterostructures with graphene and hexagonal-boron nitride (h-BN) inks, and use them to fabricate all inkjet-printed flexible and washable field-effect transistors on textile, reaching a field-effect mobility of ~91 cm2 V-1 s-1, at low voltage (<5 V). This enables fully inkjet-printed electronic circuits, such as reprogrammable volatile memory cells, complementary inverters and OR logic gates
Nanometric Chemical Analysis of Beam-Sensitive Materials: A Case Study of STEM-EDX on Perovskite Solar Cells.
Quantitative chemical analysis on the nanoscale provides valuable information on materials and devices which can be used to guide further improvements to their performance. In particular, emerging families of technologically relevant composite materials such as organic-inorganic hybrid halide perovskites and metal-organic frameworks stand to benefit greatly from such characterization. However, these nanocomposites are also vulnerable to damage induced by analytical probes such as electron, X-ray, or neutron beams. Here the effect of electrons on a model hybrid halide perovskite is investigated, focusing on the acquisition parameters appropriate for energy-dispersive X-ray spectroscopy in a scanning transmission electron microscope (STEM-EDX). The acquisition parameters are systematically varied to examine the relationship between electron dose, data quality, and beam damage. Five metrics are outlined to assess the quality of STEM-EDX data and severity of beam damage, further validated by dark field STEM imaging. Loss of iodine through vacancy creation is found to be the primary manifestation of electron beam damage in the perovskite specimen, and iodine content is seen to decrease exponentially with electron dose. This work demonstrates data acquisition and analysis strategies that can be used for studying electron beam damage and for achieving reliable quantification for a broad range of beam-sensitive materials
A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis
Integration of electroactive bacteria into electrodes combines strengths of intracellular biochemistry with electrochemistry for energy conversion and chemical synthesis. However, such biohybrid systems are often plagued with suboptimal electrodes, which limits the incorporation and productivity of the bacterial colony. Here, we show that an inverse opal-indium tin oxide electrode hosts a large population of current-producing Geobacter and attains a current density of 3 mA cm−2 stemming from bacterial respiration. Differential gene expression analysis revealed Geobacter’s transcriptional regulations to express more electron-relaying proteins when interfaced with electrodes. The electrode also allows coculturing with Shewanella for syntrophic electrogenesis, which grants the system additional flexibility in converting electron donors. The biohybrid electrode containing Geobacter can also catalyze the reduction of soluble fumarate and heterogenous graphene oxide, with electrons from an external power source or an irradiated photoanode. This biohybrid electrode represents a platform to employ live cells for sustainable power generation and biosynthesis
In Situ TEM Investigation of Thermally Induced Modifications of Cluster-Assembled Gold Films Undergoing Resistive Switching: Implications for Nanostructured Neuromorphic Devices
Cluster-assembled nanostructured gold films are renowned for exhibiting neuromorphic properties, making them pivotal components in receptrons. Receptrons, which extend the perceptron framework, are specifically crafted for the classification of Boolean functions due to their distinctive properties. However, the current understanding of the phenomena underpinning this behavior is based on overall electrical measurements and speculative modeling. In situ biasing and heating transmission electron microscopy (TEM) imaging were performed to directly investigate the nanoscale origin of the films’ neuromorphic properties. The films, resulting from the self-assembling of preformed gold nanoclusters, were deposited just above the percolation threshold to keep them electrically conductive and sufficiently thin for TEM observation and displayed a highly branched structure at the nano- and microscale. They were studied upon in situ biasing by imaging the whole area in between the biasing electrodes. The main biasing effect consisted of very confined, pronounced, and fast retraction of the branches, with concomitant formation of a few thick nanosized gold particles, and spatially limited rearrangement of the film structure. Similarly, upon overall in situ heating, the films retracted their branched structure without apparent mass loss and again with the formation of separated gold polycrystalline nanosized islands over the whole heating substrate. These general results indicate the likely occurrence of extremely intense and very local hot spots during in situ biasing, whose temperature and extension increased with the applied voltage. They also provide direct evidence of the local arrangements occurring in the film nanostructure and morphology due to electrical biasing and help understand the origin of the neuromorphic behavior of the cluster-assembled gold films
Recommended from our members
Core-Shell Electrospun Polycrystalline ZnO Nanofibers for Ultra-Sensitive NO2 Gas Sensing.
This Research Article discusses the growth of polycrystalline, self-supporting ZnO nanofibers, which can detect nitrogen dioxide (NO2) gas down to 1 part per billion (ppb), one of the smallest detection limits reported for NO2 using ZnO. A new and innovative method has been developed for growing polycrystalline ZnO nanofibers. These nanofibers have been created using core-shell electrospinning of inorganic metal precursor zinc neodecanoate, where growth occurs at the core of the nanofibers. This process produces contamination-free, self-supporting, polycrystalline ZnO nanofibers of an average diameter and grain size 50 and 8 nm, respectively, which are ideal for gas sensing applications. This process opens up an exciting opportunity for creating nanofibers from a variety of metal oxides, facilitating many new applications especially in the areas of sensors and wearable technologies.Llodys Register foundatio
Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes.
The solid electrolyte interphase (SEI) of the high capacity anode material Si is monitored over multiple electrochemical cycles by (7)Li, (19)F, and (13)C solid-state nuclear magnetic resonance spectroscopies, with the organics dominating the SEI. Homonuclear correlation experiments are used to identify the organic fragments -OCH2CH2O-, -OCH2CH2-, -OCH2CH3, and -CH2CH3 contained in both oligomeric species and lithium semicarbonates ROCO2Li, RCO2Li. The SEI growth is correlated with increasing electrode tortuosity by using focused ion beam and scanning electron microscopy. A two-stage model for lithiation capacity loss is developed: initially, the lithiation capacity steadily decreases, Li(+) is irreversibly consumed at a steady rate, and pronounced SEI growth is seen. Later, below 50% of the initial lithiation capacity, less Si is (de)lithiated resulting in less volume expansion and contraction; the rate of Li(+) being irreversibly consumed declines, and the Si SEI thickness stabilizes. The decreasing lithiation capacity is primarily attributed to kinetics, the increased electrode tortuousity severely limiting Li(+) ion diffusion through the bulk of the electrode. The resulting changes in the lithiation processes seen in the electrochemical capacity curves are ascribed to non-uniform lithiation, the reaction commencing near the separator/on the surface of the particles.This work was partially supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, under the Batteries for Advanced Transportation Technologies (BATT) Program subcontract #7057154 and the European Commission (EC), through the project EuroLion. G.D. and C.D. acknowledge funding from the ERC under Grants 259619 PHOTO EM and 312483 ESTEEM2. A.L.M. is an awardee of a Schiff Foundation Studentship and a nanoDTC Associate. M.L. is an awardee of the Weizmann Institute of Science - National Postdoctoral Award for Advancing Women in Science and thanks the EU Marie Curie intra-European fellowship for funding.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/jacs.6b0288
In Situ TEM Biasing and Heating of Neuromorphic Gold Nanogranular Nanofilms Showing Resistive Switching
- …
