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Integration of electroactive bacteria into electrodes combines
strengths of intracellular biochemistry with electrochemistry for
energy conversion and chemical synthesis. However, such biohy-
brid systems are often plagued with suboptimal electrodes, which
limits the incorporation and productivity of the bacterial colony.
Here, we show that an inverse opal-indium tin oxide electrode
hosts a large population of current-producing Geobacter and at-
tains a current density of 3 mA cm−2 stemming from bacterial res-
piration. Differential gene expression analysis revealed Geobacter’s
transcriptional regulations to express more electron-relaying pro-
teins when interfaced with electrodes. The electrode also allows
coculturing with Shewanella for syntrophic electrogenesis, which
grants the system additional flexibility in converting electron
donors. The biohybrid electrode containing Geobacter can also
catalyze the reduction of soluble fumarate and heterogenous
graphene oxide, with electrons from an external power source
or an irradiated photoanode. This biohybrid electrode represents a
platform to employ live cells for sustainable power generation and
biosynthesis.

Geobacter | electrogenesis | electrosynthesis

Interfacing the biocatalytic machinery of live cells with synthetic
electrodes provides a cross-disciplinary approach for sustainable

energy production and chemical synthesis (1, 2). While an array of
biocatalysts are already being employed in synthetic chemistry
(3), microorganisms have demonstrated unrivalled synthetic po-
tential due to sequences of well-tuned biosynthetic routes and the
advancing techniques of synthetic biology, which allows selective
synthesis of complex chemicals from the simplest feedstocks (e.g.,
CO2, H2O) under physiological conditions (4, 5). Of particular
interest are electroactive bacteria such as Geobacter and Shewa-
nella that have evolved unique mechanisms to discharge re-
spiratory electrons by reducing insoluble Fe(III) or Mn(IV)
oxides (6). These bacteria can transport endogenous electrons
across insulating and impermeable cell envelopes to extracellular
electron acceptors via outer membrane c-type cytochromes
(OMCs), conductive bacterial nanowires, and/or self-secreted
flavins (7). Their ability to exchange electrons with inorganics via
transmembrane electron conduits couples intracellular metabolism
with extracellular redox transformations (8, 9), and allows a bio-
hybrid system to exploit the biological metabolism via artificial
electronics for electrogenesis and chemical synthesis (10).
The biohybrid systems rely on electrodes that can host a col-

ony of electroactive bacteria with intact metabolic pathways (11).
Electrodes also allow probing and controlling the bacteria’s
physiological functionalities with electrochemical methodologies.
Carbon-based electrodes, such as graphite and carbon cloth, are
broadly applied in microbial fuel cells owing to their electro-
chemical stability, biocompatibility, and structural plasticity (12).
Nevertheless, the architecture of these electrodes is commonly not
optimized for a large population of bacteria while ensuring ef-
fective diffusion of nutrients and dissipation of wastes (11). In
addition, their hydrophobic surfaces are not conducive to

electrical interaction with hydrophilic bacteria (13). There-
fore, sessile bacteria on such electrodes tend to form compact
biofilms with sluggish electron transfer and inefficient mass
transport, which engender adverse stresses limiting their pro-
liferation and productivity (14).
The hallmark ofGeobacter sulfurreducens is its current-producing

capability in microbial fuel cells (6). Its ability to metabolize or-
ganic pollutants and precipitate soluble heavy metals renders it
also potentially applicable in bioremediation (15). Moreover, its
complete genome sequence primes transcriptome analysis to probe
its regulation strategies to maintain cellular homeostasis under
various conditions (16).
Here we employ an inverse opal-indium tin oxide (IO-ITO)

electrode as a platform for microbial electrogenesis and elec-
trosynthesis using G. sulfurreducens (Fig. 1 A and B). ITO is
hydrophilic and the porous electrode architecture provides easy
access for bacteria penetration and colonization (Fig. 1C). When
positive potentials are applied, planktonic G. sulfurreducens from
the medium solution attaches on the electrode surface. The
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sessile bacteria metabolize acetate to support its growth through
the tricarboxylic acid (TCA) cycle, while discharging excess
electrons to the electrode via OMCs, which is registered as a
continuous anodic current (Fig. 1 D and E). Transcriptome
analysis by RNA sequencing revealed that G. sulfurreducens reg-
ulates gene expression in order to respire on electrodes. Fur-
thermore, Shewanella loihica PV-4 was introduced together with
G. sulfurreducens on the IO-ITO electrode to achieve syntrophic
electrogenesis by linking their metabolic pathways (Fig. 1F), which
will grant the system additional flexibility in using different elec-
tron donors. Electrosynthesis was carried out by poising negative
potentials on the resulting IO-ITOjG. sulfurreducens electrode.
Under such conditions, G. sulfurreducens accepts electrons from
the electrode to sustain its metabolism and disposes respiratory
electrons by reducing soluble fumarate or heterogeneous gra-
phene oxide (GO) (Fig. 1G). Lastly, to outsource the electron
supply to a renewable source, the biohybrid electrode was coupled
with a photoanode to achieve photoelectrosynthesis without ap-
plying an external electrochemical bias.

Results and Discussion
Microbial Electrogenesis. IO-ITO electrodes were prepared by a
coassembly method using 10-μm polystyrene beads as the struc-
tural template and ITO nanoparticles (average size: 50 nm) as the
electrode material to suit the dimension ofG. sulfurreducens (length:

1.5 to 2 μm; diameter: 400 to 500 nm) (SI Appendix, Fig. S1 and Fig.
1B) (17, 18). The resulting electrode features interconnected
macropores (8 to 10 μm) accessible to bacteria and a mesoporous
skeleton permeable to both nutrients and products (Fig. 2 and
Movies S1 and S2). The IO-ITO electrode had a geometrical area
of 0.25 cm2 and a film thickness of ∼60 μm (Fig. 2 A and E).
G. sulfurreducens was integrated on an IO-ITO scaffold from

the electrolyte solution by applying a potential of 0.1 V vs. stan-
dard hydrogen electrode (SHE). During this process, planktonic
G. sulfurreducens penetrated into the electrode scaffold and
metabolized acetate into CO2 while discharging electrons to the
electrode (Fig. 1 C and D). Bacteria then proliferated and
progressively colonized the entire electrode, producing an in-
creasing anodic current that plateaued at 3 mA cm−2 after 80 h (Fig.
3A), which corresponds to a volumetric current density of
500 mA cm−3. This volumetric current density represents a
benchmark performance in microbial electrogenesis and ap-
proaches the volumetric current limit (1,000 mA cm−3) of a single
bacterium (SI Appendix, Table S1) (19). Control experiments show
that the recorded current was exclusively derived from bacterial
metabolism (SI Appendix, Figs. S2 and S3), making it a good proxy
for the bacteria’s metabolic activity. Quantification of the proteins
inside the hybrid electrode supported that the growth of bacte-
ria aligned with the increase of current density (Fig. 3B). The
high current density is attributed to the IO-ITO electrode
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Fig. 1. Schematic representation of microbial electrogenesis and electrosynthesis within the IO-ITO electrodes. (A) An IO-ITOjG. sulfurreducens electrode is
assembled into a three-electrode system with a counter electrode (C.E.) and a reference electrode (R.E.). (B) Atomic force microscopy (AFM) image of G.
sulfurreducens on a silicon wafer. (C) Schematic representation of a biohybrid electrode where G. sulfurreducens colonized on the IO-ITO scaffold. (D) Ex-
tracellular electron transfer at the interface between G. sulfurreducens and an electrode. Acetate is metabolized into CO2 via the TCA cycle and excess
electrons are discharged to an external electrode via OMCs. (E) Schematic representation of microbial electrogenesis. G. sulfurreducens is respiring on an
electrode surface with acetate as the electron donor while continuously releasing electrons to the electrode. (F) Syntrophic electrogenesis where S. loihica
metabolizes lactate into acetate and transfers electrons to the electrode mainly through self-excreted flavins. G. sulfurreducens then consumes acetate and
releases electrons to the electrode. (G) Microbial electrosynthesis of succinate and RGO using a biohybrid IO-ITO electrode. At negative potentials, the sessile
G. sulfurreducens exploits exogenously supplied electrons to maintain its metabolism while transferring excess reducing equivalent to soluble fumarate and
heterogeneous GO.
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architecture, which compartmentalized bacteria colonies with
a conductive and permeable scaffold, and thus allowed a large
population of bacteria to actively metabolize therein. In contrast,
G. sulfurreducens on a flat ITO-coated glass and a flat gold elec-
trode produced substantially less current (∼0.2 mA cm−2) and
therefore yielded a much thinner biofilm (<5 μm) (SI Appendix,
Fig. S4) (14). The current started decaying in the wake of acetate
depletion, which can be partially restored by supplementing ace-
tate into the current medium or replenishing with a fresh medium
containing acetate (Fig. 3A).
The resulting IO-ITOjG. sulfurreducens electrode displayed a

typical reddish color stemming from the redox-active multihaem
c-type cytochrome (Cyt c) (Fig. 3C, Inset). Focused ion beam-
scanning electron microscopy (FIB-SEM) imaging shows that the
bacteria penetrated through the entire IO-ITO electrode and were
in close contact with the mesoporous scaffold (Fig. 3 C and D, SI
Appendix, Fig. S5, and Movie S3). Confocal laser scanning mi-
croscopy (CLSM) images manifest the respiratory activity of living
bacteria and indicate that bacterial viability was well-retained in
the electrode scaffold (Fig. 3E and SI Appendix, Fig. S6).
Under turnover conditions, the IO-ITOjG. sulfurreducens

electrode exhibited a characteristic sigmoidal cyclic voltammetry
(CV) trace with an onset potential of −0.25 V vs. SHE (Fig. 3F,
ECO2/acetate = −0.29 V vs. SHE, pH 7.0) (20). The CV profile
points to a typical catalytic response of a biofilm, where the
catalytic current is limited by the extracellular electron transport
via OMCs (21). This is further evidenced by a control experiment
that suppressed Cyt c production in bacteria by limiting the iron
availability during growth, without affecting the bacterial viability
(SI Appendix, Fig. S7 A–C) (22). The iron-depleted (ΔFe) G.
sulfurreducens produced negligible current (0.5 μA cm−2) and a
nonturnover CV wave (SI Appendix, Fig. S7 D–F), which con-
firms the necessity of Cyt c for microbial electrogenesis. Elec-
trons delivered from the bacterium were transferred through the

conducting IO-ITO scaffold. A control experiment with an in-
sulating IO-ZrO2 scaffold on an ITO-coated glass produced
negligible current and no bacterial colony was formed (SI Ap-
pendix, Fig. S8), which demonstrates that the conductivity of the
electrode scaffold is essential for the bacterium’s outward elec-
tron transfer and biofilm formation.

Potential-Dependent Electrogenesis. The plateau anodic current
varies with the applied electrochemical potential (Fig. 3G and SI
Appendix, Fig. S9). The highest current density was attained at
0.1 V vs. SHE (2.9 ± 0.1 mA cm−2, n = 10), whereas it reduced to
1.1 ± 0.1 mA cm−2 (n = 10) at 0.4 V vs. SHE (Fig. 3G). Col-
orimetric protein quantification revealed that the biohybrid
electrode at 0.1 V vs. SHE contained more proteins than at 0.4 V
vs. SHE (Fig. 3H). We thus infer that bacteria can overcome the
thermodynamic challenge arising from a lower electrochemical
potential to discharge electrons outward by adopting a different
set of pathways (23). This would allow them to maintain com-
petitive advantages in habitats where redox states of electron
acceptors are frequently varying due to environmental and me-
teorological perturbations. It is common practice in the field to
apply high potentials (e.g., 0.4 V vs. SHE) to establish an elec-
tron sink for microbial respiration (SI Appendix, Table S1), but
our results suggest that such positive potentials might not be op-
timal for microbial electrogenesis.
RNA sequencing was then employed to understand whether

the culturing in electrodes and potential difference can induce
transcriptional responses. G. sulfurreducens for RNA extraction
was collected after the bacteria ceased proliferation in the elec-
trodes at different potentials (after the current plateau) and in a
planktonic solution with fumarate (in the stationary phase) (SI
Appendix, Figs. S3B and S10). Differential gene expression anal-
ysis shows a substantial down-regulation of gene expression when
bacteria are grown on electrodes, compared with those cultured in
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a medium solution with fumarate as the electron acceptor (Fig. 3
I and J and SI Appendix, Supplementary Text). This observation
agrees with a previous study using graphite as the electrode and
Fe(III) citrate as the soluble electron acceptor (24). It suggests
that G. sulfurreducens deployed a different metabolic strategy that
consumes less energy when interfaced with an electrode (24, 25).
The transcriptional regulation is likely to occur during the initial
lag phase (Fig. 3A), during which electron transfer pathways are

shifted to favor an insoluble electron acceptor (electrode) (24).
Nevertheless, there was no significant change in gene expression at
different potentials (0.1 V and 0.4 V vs. SHE) (Fig. 3K), despite
large differences in current density (Fig. 3G). These findings imply
that G. sulfurreducens adjusted its gene expression to keep intra-
cellular metabolism in tune with physiological needs with different
electron acceptors, whereas electrode potentials cannot induce
tangible responses at a transcriptional level. The question of how
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G. sulfurreducens can sense electrode potentials and respond to
potential variations remains unclear and requires further investi-
gations (26, 27).

Syntrophic Electrogenesis. In nature, different bacteria form
symbiotic partnerships via interspecies mass transport or elec-
tron transfer to overcome environmental disadvantages (28). This
inspires a syntrophic strategy for electrogenesis, which employs the
syntrophy between mixed cultures of electroactive bacteria, and
thus grants the system additional resilience to environmental
perturbations such as limited electron donors. S. loihica is an elec-
trogenic bacterium ubiquitously thriving in aquatic and sedimentary

environments. It has evolved robust sensing and regulatory
systems that confer its metabolic versatility (29). S. loihica and
G. sulfurreducens have similar morphology and dimensions (SI
Appendix, Fig. S11), but differ in metabolic pathways: S. loihica
utilizes lactate as the carbon and energy resource instead of ace-
tate and it engages with extracellular electron acceptors mainly
through self-secreted flavins (30). By coculturing S. loihica and G.
sulfurreducens in an IO-ITO electrode, lactate can be used as the
sole electron donor to support the electrogenesis of both strains. In
this case, S. loihica metabolizes lactate into acetate that can be
further utilized by G. sulfurreducens, while both bacteria release
electrons to the electrode (Fig. 1F). Such a syntrophic pathway can
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Fig. 4. Microbial electrosynthesis and photoelectrosynthesis with IO-ITOjG. sulfurreducens electrodes. (A) Representative cathodic current of an IO-ITOjG.
sulfurreducens electrode catalyzing fumarate (10 mM, pH 7.4) reduction at −0.45 V vs. SHE. A bare IO-ITO electrode was used as a control. (B) 1H NMR spectra
of the electrolyte solution aliquoted during the course of reaction. TMSP-d4 (1 mM) was used as the reference (0 ppm) and internal standard for quantifi-
cation. 1H NMR peaks of fumarate (singlet, 6.52 ppm) and succinate (singlet, 2.41 ppm) are indicated. (C) Quantification of reactants and products and
Faraday efficiency during the course of reaction. (D) Cathodic current of an IO-ITOjG. sulfurreducens electrode reducing GO (0.1 mg mL−1) at −0.3 V vs. SHE. A
bare IO-ITO electrode was used as a control. The Inset shows photographs of GO solutions before (labeled “GO”) and after reduction by a bare IO-ITO (labeled
“Control”) and an IO-ITOjG. sulfurreducens electrode (labeled “RGO”). All of the reactions were performed in a N2:CO2 atmosphere (80:20 v:v%) at 30 °C, with
Pt and Ag/AgCl as counter and reference electrode, respectively. (E) Schematic representation of a PEC cell consisting of an IO-TiO2jRuP anode and an IO-
ITOjG. sulfurreducens cathode. Under irradiation, the excited RuP* dye injects an electron into the conduction band of the TiO2 electrode, which is further
directed to the cathode via an external circuit. The RuP+ dye is regenerated by extracting an electron from TEOA. (F) SEM image of an IO-TiO2 electrode. The
Inset shows the top view of the electrode (Scale bar: 10 μm.) The IO-TiO2 electrode has a thickness of 40 μm and macropore size of 10 μm. (G) Photocurrent
from chronoamperometry of the IO-TiO2jRuP (0.25 cm2) and BiVO4-CoOx (1.0 cm2) photoanodes (plotted at different applied potentials) and cyclic vol-
tammogram of the IO-ITOjG. sulfurreducens electrode in fumarate (10 mM, pH 7.2) solution. Three-electrode configuration, scan rate: 5 mV s−1. (H) Light-
driven fumarate reduction with an IO-TiO2jRuPjjIO-ITOjG. sulfurreducens two-electrode system at zero bias. A bare IO-ITO electrode without bacteria was
used as the cathode for a control experiment (gray trace). TEOA (25 mM, in 50 mM KCl) was used as the electron donor for the photoanode. (I) Schematic
representation of a PEC cell consisting of a BiVO4-CoOx anode and an IO-ITOjG. sulfurreducens cathode. BiVO4 absorbs light and donates excited electrons to
the external circuit while oxidizing water with the aid of the CoOx cocatalyst. (J) Top-view (Top) and cross-sectional (Bottom) SEM images of a BiVO4-CoOx

electrode. The thickness of BiVO4 film was 500 nm and CoOx cocatalysts were deposited on top. (K) Light-driven fumarate reduction with a BiVO4-CoOxjjIO-ITOjG.
sulfurreducens two-electrode system at zero bias. A hybrid electrode with dead bacteria (deactivated by 0.1% glutaraldehyde) was used as the cathode for
a control experiment (gray trace). A PBS solution (20 mM Na2HPO4, pH 7.3) was used for the photoanode compartment. The Insets in H and K are 1H NMR
spectra of the solution extracted from the cathode compartment after 24 h of irradiation. TMSP-d4 (1 mM) was used as the reference (0 ppm) and internal
standard for quantification. The NMR peak of succinate (singlet, 2.41 ppm) is highlighted and the doublet peak at 2.7 ppm is assigned to malate. Conditions:
20 mM fumarate, pH 7.2, U = 0 V, I = 100 mW cm−2, AM 1.5G, in a N2:CO2 (80:20 v:v%) atmosphere at 25 °C. The photocurrent was normalized to the geometrical
area of the cathode (0.25 cm2).
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increase the stoichiometric production of electrons and further
attest that the IO-ITO electrode is a robust and versatile host for
various microbial communities.
As G. sulfurreducens poorly utilizes lactate for metabolism

(31), the current output at 0.4 V vs. SHE (0.13 mA cm−2) with
lactate was far below that with acetate as the electron donor
(1.07 mA cm−2) (Fig. 3L). This is also evidenced by a reduced G.
sulfurreducens population on the electrode (SI Appendix, Fig.
S12A). The current density produced by S. loihica (0.30 mA cm−2)
with lactate was smaller than that ofG. sulfurreducens with acetate
at 0.4 V vs. SHE, despite a large population of S. loihica on the
electrode (Fig. 3L and SI Appendix, Fig. S12B). This results from a
diffusion-governed extracellular electron transfer by S. loihica (32),
which is kinetically less efficient compared with direct electron
transfer via OMCs in G. sulfurreducens. Inoculation of both S.
loihica and G. sulfurreducens attained a higher current of 0.68
mA cm−2, and yielded more acetate (∼2.9 mM) than S. loihica
alone (∼1.6 mM) (Fig. 3 L and M). These together point to a
syntrophy between G. sulfurreducens and S. loihica: the presence
ofG. sulfurreducens perhaps assisted S. loihica in discharging more
electrons via interspecies electron transfer (33), which produced
more acetate and facilitated the growth of both strains (SI Ap-
pendix, Fig. S12C).

Microbial Electrosynthesis. Electrosynthesis was carried out by
poising a negative potential on the biohybrid electrode that was
cultured at 0.1 V vs. SHE for 80 to 100 h, until the current stabi-
lized. In this case, G. sulfurreducens receives electrons to sustain its
metabolism and disposes excess reducing equivalents to reduce
chemicals (20). We employed a prototypical reaction, fumarate
reduction, to exemplify the potential of leveraging intracellular
metabolism for chemical synthesis. Fumarate reduction to succinate
is part of a biosynthetic pathway that transforms CO2 into organics
and is an essential reaction for bacterial survival under anaerobic
conditions (34). At −0.45 V vs. SHE, the IO-ITOjG. sulfurreducens
electrode generated a cathodic current that returned to zero after
80 h (Fig. 4A). During the process, fumarate was stoichiometrically
reduced to succinate with a Faraday efficiency of (93 ± 12)% (Fig.
4C), whereas fumarate cannot be electrochemically reduced by a
bare IO-ITO electrode at the same potential (Fig. 4A) (20).
We further explored reactions beyond the bacteria’s native

metabolic pattern. Planktonic G. sulfurreducens can reduce GO
by extracellularly transferring electrons to GO in the presence
of electron donors (35). The sessile G. sulfurreducens in an IO-
ITO scaffold reduces GO in a similar fashion at −0.3 V vs. SHE
(Figs. 1G and 4D). The reduction of GO after 20 h is indicated
by the increasing hydrophobicity of reduced GO (RGO) and rise
of intensity ratio of D and G bands in the Raman spectra (Fig.
4D and SI Appendix, Fig. S13) (36). In the absence of bacteria, a
minimum cathodic current was recorded (Fig. 4D), suggesting
GO was reduced by G. sulfurreducens and not by the IO-ITO
scaffold at −0.3 V vs. SHE (conventional electrochemical GO
reduction is implemented at a more negative potential; −0.7 V vs.
SHE at pH 7.2) (37). We therefore show the synthetic versatility of
the biohybrid electrode to prepare functional materials beyond
natural metabolites with reduced energy input under physiological
conditions to rival more energy-intense synthetic routes.

Microbial Photoelectrosynthesis. We coupled an IO-ITOjG. sul-
furreducens electrode with a photoanode to outsource the electron
supply to photochemistry. We employed an IO-TiO2 photoanode
(geometrical surface area: 0.25 cm2) sensitized with a photosensitive
phosphonated [RuII(2,2’-bipyridine)3]-based dye (denoted as RuP,
λmax = 457 nm) to enable visible-light absorption (Fig. 4 E and F)
(38, 39). The onset potential of the IO-TiO2jRuP photoanode in
the presence of triethanolamine (TEOA, pH 7.2) was determined
at −0.6 V vs. SHE (Fig. 4G and SI Appendix, Fig. S14A), whereas
the catalytic wave of fumarate reduction by the biohybrid

electrode appeared at −0.2 V vs. SHE (Fig. 4G). The energy levels
were thus well aligned to allow autonomous light-driven fumarate
reduction without an electrochemical bias in two-electrode con-
figuration (SI Appendix, Fig. S14B). After 24 h of simulated solar
irradiation (I = 100 mW cm−2, Air Mass 1.5 Global [AM 1.5G]),
0.79 ± 0.10 mM succinate was detected, along with intermediate
metabolites such as malate (doublet, 2.7 ppm), pyruvate (singlet,
2.38 ppm) (8), corresponding to a succinate yield of (7.8 ± 1.1)%
(Fig. 4H). The presence of additional metabolites indicates that
the bacteria retained their metabolic activity with electrons sup-
plied by the photoanode and thus reduced fumarate via intracellular
biosynthetic sequences.
The IO-TiO2jRuP photoanode employs a sacrificial reagent

(TEOA) as the electron donor and is prone to photodegradation
(38). To overcome these drawbacks, we resorted to monoclinic
BiVO4 as the light-absorbing material in light of its well-suited
band structure for water oxidation to O2 (band gap: 2.4 eV;
conduction band potential: −0.4 V vs. SHE, pH 7.0) (40). We
employed BiVO4 deposited with a CoOx cocatalyst as the photo-
anode to directly extract electrons from water (in a phosphate
buffer solution, pH 7.3) (Fig. 4 I and J) (41). The BiVO4-CoOx
electrode displayed a photocurrent onset potential at −0.35 V vs.
SHE (Fig. 4G and SI Appendix, Fig. S14C) and the BiVO4-CoOx
photoanode therefore generated a smaller current at zero bias in a
two-electrode configuration with 0.51 ± 0.20 mM succinate being
detected after 24 h of irradiation (I = 100 mW cm−2, AM 1.5G)
(Fig. 4K and SI Appendix, Fig. S14D). Inactivation of the bacteria
by biocide on the cathode resulted in no succinate and other
metabolites, confirming fumarate reduction was performed through
bacterial metabolism (Fig. 4K).
Light-driven fumarate reduction has been previously carried

out using isolated flavoenzymes as the biocatalyst, but the system
performance was highly limited by the fragility of isolated en-
zymes and susceptible to enzyme orientations that dictate the
electron transfer at biointerfaces (42, 43). The microbial system
here enabled higher catalytic capacity and improved stability,
thanks to the large number of robust bacteria integrated inside
the IO-ITO scaffold. Moreover, the proteinaceous electron con-
duits on bacterial membranes allow for omnidirectional electron
transfer toward electrodes, regardless of the orientation of the
bacteria. This photosynthetic system decouples light harvesting
on the photoanode from chemical transformation at the cathode,
rendering the system optimization flexible.

Conclusion
We present a semibiological system employing electroactive bac-
teria integrated inside a porous and hydrophilic IO-ITO electrode
architecture. The resulting biohybrid electrodes provide a plat-
form to wire the bacteria’s intrinsic physiological functionalities
with artificial electronics and allow a high degree of control over
system configuration and operation. The biohybrid electrode
attained a current density of 3 mA cm−2 at 0.1 V vs. SHE arising
from microbial metabolism and represents a benchmark perfor-
mance for microbial electrogenesis. Differential gene expres-
sion analysis revealed regulation of gene expression by G.
sulfurreducens in response to changes in electron acceptors. The
IO-ITO electrode also allowed S. loihica and G. sulfurreducens
to metabolize in tandem and hence formed a syntrophic pathway
for electrogenesis, which grants the system additional flexibility in
using different electron donors to increase the stoichiometric
electron production. Moreover, the resulting IO-ITOjG. sulfur-
reducens electrode can serve as a “living” cathode to reduce fuma-
rate and GO with electrons supplied by an external electrochemical
bias or by an irradiated photoanode. Coupling of microbial electro-
synthesis with photoanodic water oxidation establishes the
possibility of sustainable synthesis driven by sunlight. This
biohybrid system synergizes metabolism with extracellular re-
dox transformations via the electrical interplay at biointerfaces

Fang et al. PNAS | March 3, 2020 | vol. 117 | no. 9 | 5079

SU
ST

A
IN
A
BI
LI
TY

SC
IE
N
CE

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

A
ug

us
t 4

, 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913463117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913463117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913463117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913463117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913463117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913463117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913463117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913463117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913463117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1913463117/-/DCSupplemental


and can further be empowered with emerging methodologies in
the realm of synthetic biology. With advancing genetic technolo-
gies, new biosynthetic pathways can be created and extended be-
yond the scope of naturally occurring metabolism. These will
pave new avenues toward sustainable energy conversion and
chemical synthesis.

Data Availability. Materials and methods, supplementary details,
SI Appendix, Figs. S1–S14 and Table S1 and Movies S1–S3 are
available in SI Appendix. Additional data (original data files and
the dataset for the gene expression analysis) related to this publi-
cation are available at the University of Cambridge data repository
(https://doi.org/10.17863/CAM.48465).
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