12 research outputs found

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2‱−, generate Al superoxides [Al(O2‱)](H2O5)]+ 2. Semireduced AlO2‱ radicals deplete mitochondrial Fe and promote generation of H2O2, O2 ‱ − and OH‱. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Association of Individual Non-Steroidal Anti-Inflammatory Drugs and Chronic Kidney Disease: A Population-Based Case Control Study

    Get PDF
    BACKGROUND:Non-steroidal anti-inflammatory agents (NSAIDs) are known to be associated with renal damage. No clear evidence exists regarding differential risk of chronic kidney disease (CKD), specifically, across various NSAIDs. AIM:The aim of this population-based case-control study was to evaluate the association between use of individual NSAIDs and risk of CKD in a general population of Southern Italy. METHODS:A nested case-control study was carried out using the general practice Arianna database, identifying incident CKD patients as cases and matched controls from 2006 to 2011. The date of first CKD diagnosis was defined as the index date (ID). Conditional logistic regressions were performed to estimate the risk of CKD associated with NSAIDs by class and individual drugs as compared to non-use during different time windows (within one year, six or three months prior to ID), with the latter being defined as current users. Among current users, the effect of cumulative exposure to these drugs was evaluated. RESULTS:Overall, 1,989 CKD cases and 7,906 matched controls were identified. A statistically significant increase in the risk of CKD was found for current users of oxicams (adjusted OR: 1.68; 95% CI: 1.15-2.44) and concerning individual compounds, for ketorolac (adj. OR: 2.54; 95% CI: 1.45-4.44), meloxicam (adj. OR: 1.98; 95% CI: 1.01-3.87) and piroxicam (adj. OR: 1.95; 95% CI: 1.19-3.21). CONCLUSIONS:The risk of CKD varies across individual NSAIDs. Increased risk has been found for ketorolac, which may precipitate subclinical CKD through acute renal damage, and long-term exposure to oxicams, especially meloxicam and piroxicam

    Some reflections on neuroscience and civil law

    No full text
    This chapter is about some prospects opened up by neurosciences for the current civil law. Just think about the discovery of the mirror-neurons and the possible use of it in the negotiation (it imposes the protection of self-determination and consensus of the contracting party); or about the consequences deriving from neuro-scientific knowledge for the notion of legal capacity (or actual abilities) of natural persons. This provides a good guess of how valuable the neuro-scientific knowledge could be for the more effective and efficient protection of the human dignity

    Circulating Autoantibodies in Age-Related Macular Degeneration Recognize Human Macular Tissue Antigens Implicated in Autophagy, Immunomodulation, and Protection from Oxidative Stress and Apoptosis

    No full text

    Guidelines for Quality Management of Apallic Syndrome / Vegetative State.

    No full text
    Item does not contain fulltex
    corecore