11,487 research outputs found

    Entanglement, BEC, and superfluid-like behavior of two-mode photon systems

    Full text link
    A system of two interacting photon modes, without constraints on the photon number, in the presence of a Kerr nonlinearity, exhibits BEC if the transfer amplitude is greater than the mode frequency. A symmetry-breaking field (SBF) can be introduced by taking into account a classical electron current. The ground state, in the limit of small nonlinearity, becomes a squeezed state, and thus the modes become entangled. The smaller is the SBF, the greater is entanglement. Superfluid-like behavior is observed in the study of entanglement growth from an initial coherent state, since in the short-time range the growth does not depend on the SBF amplitude, and on the initial state amplitude. On the other hand, the latter is the only parameter which determines entanglement in the absence of the SBF

    Quantum synchronization as a local signature of super- and subradiance

    Get PDF
    We study the relationship between the collective phenomena of super and subradiance and spontaneous synchronization of quantum systems. To this aim we revisit the case of two detuned qubits interacting through a pure dissipative bosonic environment, which contains the minimal ingredients for our analysis. By using the Liouville formalism, we are able to find analytically the ultimate connection between these phenomena. We find that dynamical synchronization is due to the presence of long standing coherence between the ground state of the system and the subradiant state. We finally show that, under pure dissipation, the emergence of spontaneous synchronization and of subradiant emission occur on the same time scale. This reciprocity is broken in the presence of dephasing noise.Comment: 12 pages, 6 figure

    Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations

    Full text link
    During the long course of evolution, nature has learnt how to exploit quantum effects. In fact, recent experiments reveal the existence of quantum processes whose coherence extends over unexpectedly long time and space ranges. In particular, photosynthetic processes in light-harvesting complexes display a typical oscillatory dynamics ascribed to quantum coherence. Here, we consider the simple model where a dimer made of two chromophores is strongly coupled with a quasi-resonant vibrational mode. We observe the occurrence of wide oscillations of genuine quantum correlations, between electronic excitations and the environment, represented by vibrational bosonic modes. Such a quantum dynamics has been unveiled through the calculation of the negativity of entanglement and the discord, indicators widely used in quantum information for quantifying the resources needed to realize quantum technologies. We also discuss the possibility of approximating additional weakly-coupled off-resonant vibrational modes, simulating the disturbances induced by the rest of the environment, by a single vibrational mode. Within this approximation, one can show that the off-resonant bath behaves like a classical source of noise

    A Study of the Density and Molecular Species of Polonium and Tellurium Vapor

    Get PDF
    The purpose of this investigation was to determine the nature of the species of polonium and tellurium in equilibrium in the vapor phase at temperatures ranging from 422 degrees to 1013 degrees C. for polonium and from 512 degrees to 880 degrees C. for tellurium. Such information was based on measurements of the variation of vapor pressure and vapor density with temperature. The results of this investigation suggest that both polonium and tellurium exist as diatomic molecules in the vapor phase over the aforementioned temperature ranges

    Power calculation for gravitational radiation: oversimplification and the importance of time scale

    Full text link
    A simplified formula for gravitational-radiation power is examined. It is shown to give completely erroneous answers in three situations, making it useless even for rough estimates. It is emphasized that short timescales, as well as fast speeds, make classical approximations to relativistic calculations untenable.Comment: Three pages, no figures, accepted for publication in Astronomische Nachrichte

    Orthogonal measurements are {\it almost} sufficient for quantum discord of two qubits

    Get PDF
    The common use in literature of orthogonal measurements in obtaining quantum discord for two-qubit states is discussed and compared with more general measurements. We prove the optimality of orthogonal measurements for rank 2 states. While for rank 3 and 4 mixed states they are not optimal, we present strong numerical evidence showing that they give the correct quantum discord up to minimal corrections. Based on the connection, through purification with an ancilla, between discord and entanglement of formation (EoF), we give a tight upper bound for the EoF of a 2⊗N2\otimes N mixed state of rank 2, given by an optimal decomposition of 2 elements. We also provide an alternative way to compute the quantum discord for two qubits based on the Bloch vectors of the state.Comment: EPL 96, 40005 (2011

    Integrated geophysical surveys to assess the structural conditions of a karstic cave of archaeological importance

    Get PDF
    An integrated geophysical survey using both the electrical resistivity tomography (ERT) and ground-penetrating radar (GPR) methods was undertaken over a cave of great archaeological interest in southern Italy. The survey was performed to assess the stability of the carbonate rock roof of the cave. A geophysical survey was preferred to boreholes and geotechnical tests, in order to avoid the risk of mass movements. The interpretation of integrated data from ERT and GPR resulted in an evaluation of some of the electromagnetic (EM) characteristics (such as the EM wave velocity) and the detection of discontinuities (fractures) in the carbonate rock. It is well known that rock fractures constitute a serious problem in cave maintenance, and progressive cracking within the bed rock is considered to be one of the main causes of collapse. An analysis of the back-scattered energy was also required for the GPR data interpretation. Cracks within the bedrock were detected to a depth of about 2 m by using GPR, which allowed for the identification of the loosened zone around the cave
    • …
    corecore