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Abstract – The common use in literature of orthogonal measurements in obtaining quantum
discord for two-qubit states is discussed and compared with more general measurements. We prove
the optimality of orthogonal measurements for rank 2 states. While for rank 3 and 4 mixed states
they are not optimal, we present strong numerical evidence showing that they give the correct
quantum discord up to minimal corrections. Based on the connection, through purification with
an ancilla, between discord and entanglement of formation (EoF), we give a tight upper bound
for the EoF of a 2⊗N mixed state of rank 2, given by an optimal decomposition of 2 elements.
We also provide an alternative way to compute the quantum discord for two qubits based on the
Bloch vectors of the state.

Introduction. – The discovery and analysis of the
quantum speedup within algorithms where entanglement
is totally absent [1] has raised considerable interest to al-
ternative measures of quantum correlations beyond entan-
glement. In contrast to the paradigm of a tensor product
structure as the root of classicality of correlations, a new
paradigm based on the ignorance produced by measure-
ment has crystallized into several measures of quantum
correlations, of which perhaps the most widely used is the
quantum discord [2,3]. In a sense, it captures the fact that
unless measurements on party B leave unaffected party A
in a bipartite states ̺AB, we cannot really speak of such
state as being purely classically correlated.

An intense recent research activity is based on quantum
discord as a quantifier for quantum correlations for two-
qubit states. Yet it is typically used in a simplified form,
where only orthogonal measurements are considered (see
e.g. [1, 2, 4–8]). There is now a raising concern about the
possibility that more general measurements might modify
the value of quantum discord, thus weakening the conclu-
sions of some recent works. The work by Hamieh et al. [9]
took a first step showing the sufficiency of projective mea-
surements (i.e. rank 1 POVM’s) for states of two qubits.
This of course does not demonstrate that two orthogo-
nal projectors are enough. In spite of the great reduction
of the complexity of the problem [9], the optimal projec-

tive measurement of a qubit can have between 2 and 4
elements [10] (the case of 2 elements corresponds to or-
thogonal measurements) and the question of how many
elements the optimal POVM has is still open. In fact in
the work by Hamieh et al. [9] only a very particular state
is studied. Hence, the matter remains unsettled and us-
ing orthogonal measurements seems to be an unnecessary
restriction.

In this Letter, we show that orthogonal measurements
are sufficient to obtain the discord of rank 2 states of two
qubits, while for rank 3 and 4 they give a pretty tight
upper bound. Moreover, given the relationship between
quantum discord and entanglement of formation for pure
tripartite states [11], we give a formula for discord based
purely on the eigenvectors and eigenvalues of the original
state, valid exactly for rank 2. We also show that the
entanglement of formation of a 2 ⊗ N rank 2 state has
a tight upper bound given by optimal decompositions of
2 elements. Finally, we give an alternative formula for
quantum discord of two qubits states of any rank based
on its Bloch vectors.

Quantum discord. – Two classically equivalent for-
mulas for the mutual information in a bipartite state, re-
lated by Bayes rule are I(A : B) = H(A) + H(B) −
H(A,B) and J (A : B) = H(A) − H(A|B), where H(.)
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is the Shannon entropy and H(A|B) is the conditional
Shannon entropy of A given B. Their quantum counter-
parts, however, differ substantially [2], the former being
known as the quantum mutual information:

I(̺) = S(̺A) + S(̺B)− S(̺), (1)

where S(.) is the von Neumann entropy and ̺A(B) are the
reduced states after tracing out party B(A). It is pre-
cisely in J (A : B) where measurements come into scene,
since the conditional entropy of A given B is the one given
by measurement outcomes on party B. Though a general
measurement has to be associated to a generic POVM,
for the sake of simplicity the community has used the re-
stricted set of perfect (von Neumann, or orthogonal) mea-
surements, i.e. :

J (̺){ΠB
j
} = S(̺A)− S(A|{ΠB

j }) (2)

with the conditional entropy defined as S(A|{ΠB
j }) =

∑

i piS(̺A|ΠB
i
), pi = TrAB(Π

B
i ̺) and where ̺A|ΠB

i
=

ΠB
i ̺Π

B
i /pi is the density matrix after a complete projec-

tive measurement ({ΠB
j }) has been performed on B. No-

tice that ΠB
j are orthogonal projectors. Quantum discord

is thus defined as the difference

δA:B(̺) = min
{ΠB

i
}

[

S(̺B)− S(̺) + S(A|{ΠB
i })
]

, (3)

minimized over all possible orthogonal measurements.
However, more general measurements should be used to
exhaust the minimization problem, as already stated in
the seminal papers [2, 3]. Hence the following generaliza-
tion is required

̺A|ΠB
j
→ ̺A|EB

j
= TrB(E

B
j ̺AB/pj) (4)

where the elements of the POVM EB
j fulfill

∑

j E
B
j = 1B

δA:B(̺) = min
{EB

i
}

[

S(̺B)− S(̺) + S(A|{EB
i })

]

. (5)

Based on the convexity properties of the conditional en-
tropy S(A|{EB

i }) Hamieh et al. [9] (see also [12]) show that
POVM’s which optimize discord are extremal or indecom-
posable, i.e. they cannot be obtained by mixing other
POVM’s; further, it has been shown [10] that extremal
POVM’s for qubits are of rank 1 and can have between 2
and 4 elements.

Unified picture through purification. – In [11] it
was shown that given a mixed state ̺AB and its purifica-
tion |ψABC〉 through an ancilla qudit C, the following rela-
tion between the conditional entropy when B is measured,
and the entanglement of formation EF of the subsystem
AC holds:

min
{EB

i
}
S(A|{EB

i }) = EF (̺AC) (6)

between the conditional entropy when B is measured,
and the entanglement of formation EF of the subsystem
AC. The minimization of the AB conditional entropy
over POVM measurements on B is thus equivalent to
minimization of EF in AC over all ensemble decomposi-
tions. Hence the number of elements giving the optimal
ensemble decomposition of EF (̺AC) coincides with the
number of elements of the POVM which minimizes
S(A|{EB

i }) [11].

Theorem 1. Given a bipartite mixed state of two
qubits ρAB of rank 2, the optimal measurement giving
the quantum discord is a 2 element POVM. The elements
of such POVM are orthogonal projectors.
Proof. Consider a rank 2 state of two qubits

with spectral decomposition ρAB =
∑R=2

i=1 αi|ψi〉〈ψi|.
Its purification by an ancilla qubit C has the form
|ΨABC〉 =

∑2
i=1

√
αi|ψi〉|i〉C , where |i〉C forms an

orthonormal basis in the Hilbert space of the an-
cilla qubit. We can also Schmidt decompose this
state as |ΨABC〉 =

∑m
i=1

√
βi|i〉B|φi〉AC , where

m = min(dB , dAdC) = dB = 2 with dB is the di-
mension of the Hilbert space of party B and so forth. So
the partition AC has the form ρAC =

∑m=2
i=1 βi|φi〉〈φi|

and hence is of rank 2. Wootters [13] showed that the
entanglement of formation of this two-qubit mixed state
is obtained from an optimal decomposition made up of
as many elements as its rank, which in this case is 2,
which in turn means that the POVM in B that realizes
such decomposition has 2 elements. Being optimal
POVM’s of rank 1, the 2 elements of such POVM are
necessarily orthogonal [10]. This can be seen by noticing
that a rank 1 POVM of 2 elements E1 = α1|φ1〉〈φ1|
and E2 = α2|φ2〉〈φ2| has to fulfill positivity Ei > 0
and normalization E1 + E2 = 1, which necessarily lead
to orthogonality of its elements (this is easy to show
when the elements Ei are written in Bloch form [10]. QED

Corollary. The quantum discord of a rank 2 state of
two qubits is given by

δA:B(̺AB) = S(̺B)− S(̺AB) + E(C(̺AC)), (7)

with

̺AC = trB





2
∑

i,j=1

√

λiλj |ψi〉〈ψj | ⊗ |i〉C〈j|



 , (8)

where {λi, |ψi〉} is the spectral decomposition of ̺AB, and
|iC〉 is any orthonormal basis in HC . The function E is
given by

E(C) = h(
1 +

√
1− C2

2
), (9)

where

h(x) = −x log2 x− (1− x) log2(1− x), (10)
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and where C(ρ) is the concurrence of ρ [13], given by
max(0, l1 − l2 − l3 − l4), with li the eigenvalues of the
hermitian matrix R(̺AC), where R(ρ) =

√√
ρρ̃

√
ρ and

ρ̃ = (σy ⊗ σy)ρ
∗(σy ⊗ σy).

Hence, to obtain the discord, diagonalize ̺AB and use
its eigenvalues and eigenvectors to construct ̺BC . Obtain
the concurrence of ̺BC , substitute it in E(C) and obtain
the optimal conditional entropy between A and B. This
result was implicit in ref. [14].

Quantum discord of rank 3 and 4 states. – Or-
thogonal measurements do not give the optimal discord for
higher rank states, as first found in [15] through a coun-
terexample based on maximally discordant mixed states
(MDMS) [16]. Their study was limited to 3 element
POVM’s leading to a deviation of ∼ 2×10−5 with respect
to orthogonal projectors. However we will give evidence
that the set of states where 3 and 4-element POVM’s are
needed is indeed small and the improvement in discord
using Eq. (5) is tiny.
In the case of states ̺AB with rank higher than 2, a pu-

rification would yield a qubit-qudit system in AC, whose
optimal decomposition (for EF ) is not known. Therefore
no analytical tool can help us discriminate how many ele-
ments build the optimal POVM for the quantum discord
of states with rank higher than 2. However, it is known
that for qubits the optimal measurements are given by
rank 1 measurements with 2, 3 and 4 outcomes. This
knowledge is based on two facts: i) the conditional en-
tropy S(A|{EB

i }) is a concave function over the convex
set of POVM’s [9, 12], hence only extremal POVM’s will
minimize it, ii) extremal POVM’s of qubits are rank 1
and have 2, 3 or 4 elements [10], i.e. EB

j = αj |φj〉〈φj |
(j = 2, ...N , N ≤ 4), with α real and nonzero and |φj〉 are
pure states (nonorthogonal unless N = 2).
Even considering at most 4 elements POVM’s, the nu-

merical analysis of this problem is challenging, as detailed
in the following. We start parametrizing the N elements
of a POVM as:

Ẽ1 = α1|0〉〈0|
Ẽj = αjU(θj , φj)|0〉〈0|U †(θj , φj) (1 < j ≤ N),

where U(θ, φ) is a qubit rotation, plus a final global
rotation U(Ω,Φ) acting on all elements; i.e. Ei =
U(Ω,Φ)ẼiU

†(Ω,Φ). The completeness relation
∑

i Ei =
1 solves the coefficients in terms of the angles: αi =
αi({θj , φj}). This means running 6(8) loops in angles1,
for 3(4)-element POVM’s, for each state, in order to solve
the minimization problem in the discord definition (5). We
must note that orthogonal measurements are a limit case
in the definition of 3-element POVM’s; in the same way 4
element POVM’s do not include the case of 3 elements.

1Though for the case of 3-element POVM’s the number of loops

can be reduced to 5 by using geometrical arguments.

The numerical evaluation of discord is very sensitive to
identification of the minimizing POVM and a proper scan
of all possible POVM’s requires small step sizes for the an-
gles {θj, φj}. To give an idea on the sensitivity of the mini-
mization on the step size in the angles, we show in fig. 1 the
values of discord for 2, 3 and 4-element POVM’s (δ2, δ3, δ4)
against the step size for three states. In all cases it is sur-
prising the oscillatory nature of discord even for rather
refined samplings (small angles). This demonstrates the
importance to scan all POVM’s over different step sizes
to gather the minimum, best approximating Eq. (5). We
notice that a refinement until angular step sizes ∼ 0.02π
is feasible only for 2 and 3 elements POVM’s. In any
case, a good level of accuracy is obtained if the lowest
value of discord obtained among different angular preci-
sions is retained. The insets of fig. 1 show the minimum
value of discord obtained inside a box of angular precisions
∆θ = ∆φ ∈ [w, 0.25π].
In fig. 1a we show the state with highest deviation we

have found (highest point in fig. 2) in a scan of 105 random
states of rank 3 and 4, with δ2 − δ3(4) ∼ 10−3. This devi-
ation is high above the typical deviation we have found of
around 10−6. In fig. 1b we show a MDMS of rank 3, sepa-
rable, but with maximum discord versus classical correla-
tions [16]: ̺MDMS = (1− ǫ)(m|00〉〈00|+(1−m)|11〉〈11|)+
ǫ|Ψ−〉〈Ψ−| with |Ψ−〉 = (|01〉 − |10〉)/

√
2 the usual Bell

state and values ǫ = 0.2349602, m = 0.11. In this case,
POVM’s with more than 2 elements are needed. This is
actually a rather singular event, as we will see in fig. 2. In-
deed in fig. 1b we show that an improvement of ∼ 8×10−6

is provided by 3,4-element POVM’s (δ3(4)), as compared to
orthogonal measurements (δ2). The most common situa-
tion is represented in figure 1c, for a generic state obtained
by a random density matrix of rank 3.
Next we aim to establish the abundance of states for

which 3 or 4 elements POVM’s provide the improvement in
discord found in fig. 1. We then start with a scan of Hilbert
space where 105 random density matrices of rank 3 and 4
have been generated according to the Haar measure. We
plot in fig. 2 the deviations δ2 − δ3(4) (only when positive)
versus the result for orthogonal measurements (δ2). In this
figure we have sampled the angles from steps∼ 0.3π until a
lower limit of w= 0.03π (0.18π) for 3 (4)-elements POVM’s
respectively. We observe that the optimal discord is given
by orthogonal POVM’s, except for a 0.63%(0.001%) of
states which have a typical deviation of order 10−6 (see
Table 1). In order to discriminate the dependence of such
abundance and degree of deviations on the scan size (N),
or the precision in the angles (∆θ = ∆φ ∈ [w, 0.25π]), we
present in Table 1 the results obtained for different sample
characteristics N,w.
We find that for a given angular precision (for instance

up to w= 0.03π in Table 1) the abundance of deviant
states (p) is not sensitive to the sample size (the cases
N = 3 × 104 and 105 can be compared in the table). On
the other hand discriminating states with δ2 > δ3 in which
these values are close, requires a quite refined angular pre-
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a)

b)

c)

Fig. 1: (color online) Quantum discord minimized by 2 (δ2,
black), 3(δ3, red) and 4(δ4, orange) elements POVM’s with the
given step size ∆θ = ∆φ in the angles of the POVM elements
Ei. The states are a) the most deviant state we have found
(highest point in fig. 2), b) a MDMS of rank 3 with m = 0.11,
see [16], and c) a random rank 3 state. In the inset we show
the precision of δ2, δ3 and δ4, by plotting its minimum inside
a box ∆θ = ∆φ ∈ [w, 0.25π].

cision (w), therefore leading to a highly dependent abun-
dance (p) (see strong variation of p to find states with
δ2 > δ3 for N = 105 in the table). Due to computational
limitations such a deep numerical study was only possible
for 3-el. POVM’s while for 4-el. POVM’s we were only
able to reach precisions up to w= 0.18π, for which we
have found only one deviating state. At the best precision
reached we see that the typical (average) deviation δ2− δ3
is of the order 10−6 with a standard deviation of order
10−5.

The set of states for which we find improvements with
δ3(4) is rather small. An interesting question is whether
these states lie in the neighborhood of rank 3 MDMS [15,
16] or are distributed everywhere in the {J , I} diagram
(figure 1 in the same reference). We first stress that the
state in fig. 1a is nowhere near the MDMS border (it has
{J ≃ 0.17, I ≃ 0.1809}). Moreover we can gain some
insight about the smallness of the MDMS neighborhood
by investigating the state of rank 3 in fig. 1b [16] whereby
we perturbate it with a Bell state. That is we study the
state ̺ = (1 − λ)̺MDMS + λ|Φ+〉〈Φ+| with |Φ+〉 = (|00〉+
|11〉)/

√
2. The effect of this perturbation is to move the

state away from the border in the {J , I} diagram. We find

Fig. 2: (color online) Deviation of quantum discord δ2−δ3(4) as
given by 3- (blue) and 4-element (red) POVM’s, for a scan of
105 states of ranks 3 and 4. The density matrices are randomly
generated following the Haar measure. The only state found
with δ2 − δ4 > 0 corresponds to that of fig. 1a, with highest
deviation.

that already for λ ≃ 0.002 we reach the transition where
δ2 = δ3 = δ4, meaning that, at least in the neighborhood
of the MDMS border, 3,4-element POVM’s are needed in
a very tiny region.
Summarizing our numerical analysis for randomly gen-

erated states, we have found that orthogonal measure-
ments are almost enough in the following sense. The im-
provements δ3(4) < δ2 do occur but they represent small
corrections (a maximum deviation 10−3 was found for only
one state in a sample of 105 while other deviations were up
to 10−5, fig. 2) and they can be numerically appreciated
only for a tiny set of states (with the mentioned mini-
mization up to precision w= 0.02π these states appear
with probability ∼ 10−2 for δ3, while for δ4 they appear
with probability ∼ 10−5 at w= 0.18π).
Given this numerical evidence we give the following up-

per bound:

Observation. – The entanglement of formation of a
2⊗N rank 2 bipartite state ̺BC has a tight upper bound
given by an optimal decomposition of two elements:

EF (̺BC) ≤ min
{pk,|φk

BC
〉}

2
∑

k=1

pkE(|φkBC〉), (11)

with E(|φkBC〉) = S(trB(|φkBC〉〈φkBC |)). The deviation
from the equality is on average of order 10−6.

To show this, take the 2 ⊗N , rank 2, state in spectral
form ̺BC =

∑2
k=1 λk|ψk

BC〉〈ψk
BC |. It can be purified by

an ancilla qubit as |ψABC〉 =
∑2

k=1

√
λk|ekA〉|ψk

BC〉, with
|ekA〉 any orthonormal basis in HA. Again according to
[11]:

EF (̺BC) = min
{EA

j
}
S({EA

j }|B) ≤ min
{ΠA

j
}
S({ΠA

j }|B), (12)

p-4



Orthogonal measurements are almost sufficient for quantum discord

Table 1: Probability (p) to find states with ∆ ≡ δ2−δ3(4) > 0 in
a sample of N states whose discord is calculated with angular
precision up to w. We show the average deviation 〈∆〉 and its
standard deviation σ(∆). The standard deviation is reduced
by an order of magnitude if we remove the state a) of fig 1. We
do not show the average deviation for δ2 > δ4 nor its standard
deviation since only one state was found in the full scan.

δ2 > δ3
N w/π p 〈∆〉 σ(∆)

3 · 104 0.03 6.6 · 10−3 1.6 · 10−6 2.6 · 10−6

105 0.05 5 · 10−4 2 · 10−5 1.2 · 10−4

105 0.03 6.3 · 10−3 3 · 10−6 3.7 · 10−5

105 0.025 8 · 10−3 2.8 · 10−6 3.4 · 10−5

105 0.02 1.4 · 10−2 2.1 · 10−6 2.6 · 10−5

δ2 > δ4
3 · 104 0.2 0 – –
105 0.2 10−5 – –
105 0.18 10−5 – –

where restriction to orthogonal measurements ’spoils’ the
minimization. Given the numerical evidence we have pro-
vided, the improvement of doing full minimization is on
average at the level of 10−6 (see Table 1).
The conditional entropy for a given orthonormal mea-

surement ΠA
k = |ξk〉〈ξk| is given by

S({ΠA
k }|B) =

2
∑

k=1

pkS(ρ
k
B) =

2
∑

k=1

pkE(ρkBC) (13)

with pk = tr(ΠA
k ̺ABC) and ρkB = trAC(Π

A
k ̺ABC)/pk. In

the last equality we have used the fact that ρkBC is pure.
This can be seen by writing explicitly

ρkBC = trA(Π
A
k ̺ABC) =

=
2
∑

i,j=1

ei(k)e
∗
j (k)

√

λiλj |ψi
BC〉〈ψj

BC | =

= |φiBC〉〈φiBC | (14)

with |φiBC〉 =
∑2

i=1 ei(k)
√
λi|ψi

BC〉, and ei(k) = 〈ξk|ei〉.
So, finally, S(ρkB) = E(|φkBC〉). QED

We stress the fact that instead of minimization over en-
semble decompositions with a number of elements ranging
from R to R2 (R is the rank of the state), as shown to be
sufficient by Uhlmann [17], we can safely restrict to de-
compositions with 2 elements if we are not interested in
states which are rare to find and have deviations which are
probably quite small, as we have seen when perturbing a
MDMS extremal state.

Bloch formula for quantum discord. – We finish
by giving an alternative formula for the computation of
quantum discord of generic two-qubit states of any rank.

Writing the POVM elements in Bloch form

EA
i = αi(1A + ~ni · ~σA), (15)

with the positivity and normalization (completeness) con-
ditions

αi > 0 ,
∑

i

αi = 1 ,
∑

i

αi~ni = ~0 , (|~ni| = 1), (16)

and the density matrix ̺AB (coming from purification of
̺BC plus tracing subsystem C) given also in Bloch form

̺AB =
1

4

(

1AB + ~a · ~σA +~b · ~σB +
∑

i

ciσ
i
A ⊗ σi

B

)

(17)

(notice that when we write ~a ·~σA, we mean ~a ·~σA⊗1B),
we enunciate the following theorem:

Proposition. The discord δA:B(̺AB) with ̺AB of any
rank, written as in eq. (17), is given by eqs.(18-21) and
m(= 2, 3, 4) is the number of elements of the extremal
POVM.

The minimization is restricted by the conditions for ex-
tremality [10] for each number of POVM elements (m):

m=2: all extremal, from normalization they follow:

αi =
1

2
, ~n1 = −~n2 ≡ ~n (i.e. orthogonal) (22)

m=3: all extremal, from normalization they follow:

α3 = 1− α1 − α2 , ~n3 = − 1

α3
(~n1 + ~n2) (23)

m=4: ~ni not in the same plane;

normalization yields

4
∑

i=1

αi~ni = ~0 (24)

Proof. Simple algebra yields the probabilities and out-
comes of each measurement:

pk ≡ tr
(

EB
i ̺AB

)

= αi(1 + ~ni ·~b) (25)

ρkA ≡ trB
(

EB
i ̺AB

)

/pk =

=
1

2

(

1A +
(~a+ ~cnk) · ~σA

1 +~b · ~nk

)

(26)

whose entropy can be calculated from the eigenvalues of
ρkA (λ±k (~a,

~b, ~cnk)) as defined in eq. (19). The condition
that for m = 4 extremality implies that the POVM
elements cannot lie in the same plane, was derived in [10],
as well as the normalization conditions.

In summary, we have proven that the quantum discord
of rank 2 two-qubit mixed states is obtained using only
orthogonal projectors as measurements. Strong numerical
evidence has been given to conjecture that they are almost
sufficient for higher ranks, except for states which appear
with probability ∼ 10−2 and have negligible deviations on
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δA:B(̺AB) = SB − SAB + min
{αi,~ni}

m
∑

i=1

αi(1 + ~ni ·~b)
∑

±

H(λ±i (~a,
~b, ~cni)) (18)

λ±i (~a,
~b, ~cni) =

1

2

(

1±
∣

∣

∣

∣

~a+ ~cni

1 +~b · ~ni

∣

∣

∣

∣

)

, ~cni = {cxni,x, cyni,y, czni,z} (19)

SB =
∑

±

H(
1

2
(1 ± |~b|)) (20)

SAB = S(̺AB) (21)

average of order 10−6 in a sample of 105 states (w= 0.02π
for δ3). We discussed the importance of the states sample
size and of the precision in scanning all possible measure-
ments, showing the need of using a minimization proce-
dure over different angular step sizes. Two examples were
given in figs. 1a and 1b, both of rank 3, showing that 3
and 4 element POVM’s give a better quantum discord,
though with a very small improvement (a maximum of
order 10−3). Based on the connection [11] between con-
ditional entropy and entanglement of formation we have
given a related tight upper bound, namely that the en-
tanglement of formation of a 2 ⊗ N system of rank 2
is obtained by 2 element decompositions with very high
probability and precision. Finally, an alternative quan-
tum discord formula for generic mixed states of two qubits
was given in terms of the Bloch vectors of the state, where
minimization is performed over the Bloch form of POVM’s
elements. As a side remark, we note that Gaussian discord
in continuous variable systems is also an example where
projective, but not orthogonal measurements are optimal
[18, 19].
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