61 research outputs found

    The role of autophagy in epileptogenesis and in epilepsy-induced neuronal alterations

    Get PDF
    Abstract Recent evidence suggests that autophagy alterations are present in a variety of neurological disorders. These range from neurodegenerative diseases to acute neurological insults. Thus, despite a role of autophagy was investigated in a variety of neurological diseases, only recently these studies included epilepsy. This was fostered by the evidence that rapamycin, a powerful autophagy inducer, strongly modulates a variety of seizure models and epilepsies. These findings were originally interpreted as the results of the inhibition exerted by rapamycin on the molecular complex named ‘‘mammalian Target of Rapamycin’’ (mTOR). Recently, an increasing number of papers demonstrated that mTOR inhibition produces a strong activation of the autophagy machinery. In this way, it is now increasingly recognized that what was once defined as mTORpathy in epileptogenesis may be partially explained by abnormalities in the autophagy machinery. The present review features a brief introductory statement about the autophagy machinery and discusses the involvement of autophagy in seizures and epilepsies. An emphasis is posed on evidence addressing both pros and cons making it sometime puzzling and sometime evident, the role of autophagy in the epileptic brain

    Reversible MRI abnormalities in mesial temporal lobe epilepsy: a case report

    Get PDF
    The question regarding the existence of abnormalities in the neuroimaging exams immediately after status epilecticus or epileptic seizures, but showing complete reversibility after a proper antiepileptic therapy, has long been debated. The first reports attempting to demonstrate their existence date back to the 1980s, and relied upon computed tomography as the imaging method of choice. After the introduction of MRI, a more appropriate characterization of these abnormalities was obtained along with the description of their most frequent features: (a) T2 signal hyperintensity in the white matter and, occasionally, (b) reduced apparent diffusion coefficient (ADC) and increased signal in DWI sequences.The MRI abnormalities induced by epileptic activity pose a broad differential diagnosis including infections, inflammatory autoimmune encephalopathies, neoplasms. It remains a diagnosis of exclusion and requires proper diagnostic iter in order to reduce the risk of misdiagnosis and unnecessary intervention.In this case report, a thorough presentation will be outlined about MRI alterations in the left mesial temporal lobe, which resulted completely reversible after a proper antiepileptic therapy

    Locus Coeruleus Magnetic Resonance Imaging in Neurological Diseases

    Get PDF
    Locus coeruleus (LC) is the main noradrenergic nucleus of the brain, and its degeneration is considered to be key in the pathogenesis of neurodegenerative diseases. In the last 15 years,MRI has been used to assess LC in vivo, both in healthy subjects and in patients suffering from neurological disorders. In this review, we summarize the main findings of LC-MRI studies, interpreting them in light of preclinical and histopathological data, and discussing its potential role as diagnostic and experimental tool

    beta-Secretase1 biological markers for Alzheimer's disease : state-of-art of validation and qualification

    Get PDF
    beta -Secretase1 (BACE1) protein concentrations and rates of enzyme activity, analyzed in human bodily fluids, are promising candidate biological markers for guidance in clinical trials investigating BACE1 inhibitors to halt or delay the dysregulation of the amyloid-beta pathway in Alzheimer's disease (AD). A robust body of evidence demonstrates an association between cerebrospinal fluid/blood BACE1 biomarkers and core pathophysiological mechanisms of AD, such as brain protein misfolding and aggregration, neurodegeneration, and synaptic dysfunction.In pharmacological trials, BACE1 candidate biomarkers may be applied to a wide set of contexts of use (CoU), including proof of mechanism, dose-finding, response and toxicity dose estimation. For clinical CoU, BACE1 biomarkers show good performance for prognosis and disease prediction.The roadmap toward validation and qualification of BACE1 biomarkers requires standardized pre-analytical and analytical protocols to reduce inter-site variance that may have contributed to inconsistent results.BACE1 biomarker-drug co-development programs, including biomarker-guided outcomes and endpoints, may support the identification of sub-populations with a higher probability to benefit from BACE1 inhibitors with a reduced risk of adverse effects, in line with the evolving precision medicine paradigm

    Tolerability of new antiepileptic drugs:a network meta-analysis

    Get PDF
    Objective: The objective of this study was to perform a comparative assessment of tolerability of all licensed new antiepileptic drugs (AEDs) through a network meta-analysis (NMA) including all placebo-controlled double-blind clinical trials (RCTs) in all conditions in which these drugs have been tested. Methods: NMA with a frequentist approach was used to compare proportions of patients withdrawing because of adverse events (AEs). Analyses were conducted for all therapeutic doses pooled and specifically for high therapeutic doses. Patients treated with non-therapeutic doses of each drug were excluded. Results: A total of 195 RCTs were included in the current analysis, comprising a total of 28,013 patients treated with AEDs and 17,908 patients treated with placebo. RCTs included in the analysis were 8 for brivaracetam; 5 for eslicarbazepine; 22 for gabapentin; 7 for lacosamide; 14 for levetiracetam; 14 for lamotrigine; 6 for oxcarbazepine; 9 for perampanel; 50 for pregabalin; 5 for tiagabine; 36 for topiramate; 7 for zonisamide; 4 for gabapentin-extended formulation (ER); 2 each for levetiracetam-ER, lamotrigine-ER, and topiramate-ER; and 1 each for oxcarbazepine-ER and pregabalin-ER. Brivaracetam, gabapentin, gabapentin-ER, and levetiracetam had a significantly lower withdrawal rate compared to several other AEDs, while eslicarbazepine, lacosamide, oxcarbazepine, and topiramate had a higher withdrawal rate. Perampanel, lamotrigine, pregabalin, tiagabine, and zonisamide showed an intermediate pattern of tolerability. Additional analysis has been conducted through selection of highly recommended doses for each drug. This analysis has roughly confirmed results of head to head comparisons of the all-dose analysis, with some exceptions. A further analysis has been conducted after exclusion of RCTs in which patients were allocated to the therapeutic dose of the experimental drug without titration, and it failed to show clinically important differences. Significance: Relevant differences in short-term tolerability of AEDs have been observed between AEDs. Brivaracetam, gabapentin, and levetiracetam show the best tolerability profile while other AEDs are at higher risk for intolerable adverse effects

    Pharmacokinetic Interactions of Clinical Interest Between Direct Oral Anticoagulants and Antiepileptic Drugs

    Get PDF
    Direct oral anticoagulants (DOACs), namely apixaban, dabigatran, edoxaban, and rivaroxaban are being increasingly prescribed among the general population, as they are considered to be associated to lower bleeding risk than classical anticoagulants, and do not require coagulation monitoring. Likewise, DOACs are increasingly concomitantly prescribed in patients with epilepsy taking, therefore, antiepileptic drugs (AEDs), above all among the elderly. As a result, potential interactions may cause an increased risk of DOAC-related bleeding or a reduced antithrombotic efficacy. The objective of the present review is to describe the pharmacokinetic interactions between AEDs and DOACs of clinical relevance. We observed that there are only few clinical reports in which such interactions have been described in patients. More data are available on the pharmacokinetics of both drugs classes which allow speculating on their potential interactions. Older AEDs, acting on cytochrome P450 isoenzymes, and especially on CYP3A4, such as phenobarbital, phenytoin, and carbamazepine are more likely to significantly reduce the anticoagulant effect of DOACs (especially rivaroxaban, apixaban, and edoxaban). Newer AEDs not affecting significantly CYP or P-gp, such as lamotrigine, or pregabalin are not likely to affect DOACs efficacy. Zonisamide and lacosamide, which do not affect significantly CYP activity in vitro, might have a quite safe profile, even though their effects on P-gp are not well-known, yet. Levetiracetam exerts only a potential effect on P-gp activity, and thus it might be safe, as well. In conclusion, there are only few case reports and limited evidence on interactions between DOACs and AEDs in patients. However, the overall evidence suggests that the interaction between these drug classes might be of high clinical relevance and therefore further studies in larger patients' cohorts are warranted for the future in order to better clarify their pharmacokinetic and define the most appropriate clinical behavior

    The placebo and nocebo responses in patients with epilepsy

    No full text
    Placebo and nocebo responses in epilepsy have been mainlyinvestigated by meta-analytic approaches aimed to evaluate the extent ofsuch phenomenon in randomized, controlled, clinical trials. These studiesreported placebo response rates (defined as proportion of patients with =50% improvement of seizures compared to baseline observations) rangingfrom 9.9% up to 15.2%. The proportion of patients with adverse events(AEs) and those withdrawing because of intolerable AEs, as index ofnocebo response, were 60.3% and 3.9%, respectively. Moreover, a fullevaluation of specific AEs reported by patients receiving placebo hasbeen performed. A number of factors related to the features of patients(severity of disease), to the study design, or to non-specific factors (suchas year of publication and geographic area), as well as to positive ornegative expectations of patients, caregivers and experimenters have beenshowed to influence placebo and nocebo response in epilepsy. Acharacterization of these factors is crucial for a better interpretation ofstudy results and to improve design of new clinical trials. All recent datawill be presented and discussed in detail.In addition, as neurobiological studies in epilepsy are lacking,putative mechanisms of placebo and nocebo responses in epilepsy will behypothesized and discussed along with possible consequences in clinicalpractic

    The neuroinflammatory biomarker YKL-40 for neurodegenerative diseases: advances in development

    No full text
    Introduction: Neuroinflammation is a common pathophysiological mechanism in neurodegenerative diseases (ND). Cerebrospinal fluid (CSF) YKL-40 has recently been candidated as a neuroinflammatory biomarker of ND. Areas covered: We provide an update on the role of CSF YKL-40 as a pathophysiological biomarker of ND. YKL-40 may discriminate Alzheimer's disease (AD) from controls and may predict the progression from the early preclinical to the late dementia stage. In genetic AD, YKL-40 increases decades before the clinical onset. It does not seem a specific biomarker of a certain ND although sporadic Creutzfeldt-Jacob disease shows the highest YKL-40 concentrations. YKL-40 may discriminate between amyotrophic lateral sclerosis (ALS) and ALS-mimics. YKL-40 is potentially associated with the rate of ALS progression. YKL-40 correlates with biomarkers of neuronal injury, large axonal damage and synaptic disruption in various ND. It is not associated with the presence of the APOE-Δ4 allele whereas possibly linked to aging, female sex, Hispanic ethnicity and some genetic variants of the chitinase-3-like 1 locus. Expert opinion: There is growing evidence expanding the relevance of CSF YKL-40 as a pathophysiological biomarker for ND. Patients showing high YKL-40 levels might benefit from targeted clinical trials that use compounds acting against neuroinflammatory mechanisms, independently of the initial clinical diagnosis of ND
    • 

    corecore