
MINI REVIEW
published: 07 December 2018
doi: 10.3389/fneur.2018.01067

Frontiers in Neurology | www.frontiersin.org 1 December 2018 | Volume 9 | Article 1067

Edited by:

Svetlana Lorenzano,

La Sapienza University of Rome, Italy

Reviewed by:

Olagide Wagner Castro,

Federal University of Alagoas, Brazil

Francesco Paladin,

Ospedale SS. Giovanni e Paolo, Italy

*Correspondence:

Marta Maschio

marta.maschio@ifo.gov.it

Specialty section:

This article was submitted to

Epilepsy,

a section of the journal

Frontiers in Neurology

Received: 08 August 2018

Accepted: 23 November 2018

Published: 07 December 2018

Citation:

Galgani A, Palleria C, Iannone LF, De

Sarro G, Giorgi FS, Maschio M and

Russo E (2018) Pharmacokinetic

Interactions of Clinical Interest

Between Direct Oral Anticoagulants

and Antiepileptic Drugs.

Front. Neurol. 9:1067.

doi: 10.3389/fneur.2018.01067

Pharmacokinetic Interactions of
Clinical Interest Between Direct Oral
Anticoagulants and Antiepileptic
Drugs

Alessandro Galgani 1, Caterina Palleria 2, Luigi Francesco Iannone 2,

Giovambattista De Sarro 2, Filippo Sean Giorgi 1, Marta Maschio 3* and Emilio Russo 2

1Neurology Unit, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy, 2Department of Science of Health, University Magna

Graecia of Catanzaro, Catanzaro, Italy, 3UOSD Neurology, Center for Tumor-related Epilepsy, Regina Elena National Cancer

Institute, Rome, Italy

Direct oral anticoagulants (DOACs), namely apixaban, dabigatran, edoxaban, and

rivaroxaban are being increasingly prescribed among the general population, as they

are considered to be associated to lower bleeding risk than classical anticoagulants, and

do not require coagulation monitoring. Likewise, DOACs are increasingly concomitantly

prescribed in patients with epilepsy taking, therefore, antiepileptic drugs (AEDs), above

all among the elderly. As a result, potential interactions may cause an increased risk

of DOAC-related bleeding or a reduced antithrombotic efficacy. The objective of the

present review is to describe the pharmacokinetic interactions between AEDs and

DOACs of clinical relevance. We observed that there are only few clinical reports in

which such interactions have been described in patients. More data are available on

the pharmacokinetics of both drugs classes which allow speculating on their potential

interactions. Older AEDs, acting on cytochrome P450 isoenzymes, and especially on

CYP3A4, such as phenobarbital, phenytoin, and carbamazepine are more likely to

significantly reduce the anticoagulant effect of DOACs (especially rivaroxaban, apixaban,

and edoxaban). Newer AEDs not affecting significantly CYP or P-gp, such as lamotrigine,

or pregabalin are not likely to affect DOACs efficacy. Zonisamide and lacosamide, which

do not affect significantly CYP activity in vitro, might have a quite safe profile, even though

their effects on P-gp are not well-known, yet. Levetiracetam exerts only a potential effect

on P-gp activity, and thus it might be safe, as well. In conclusion, there are only few

case reports and limited evidence on interactions between DOACs and AEDs in patients.

However, the overall evidence suggests that the interaction between these drug classes

might be of high clinical relevance and therefore further studies in larger patients’ cohorts

are warranted for the future in order to better clarify their pharmacokinetic and define the

most appropriate clinical behavior.
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INTRODUCTION

The direct-acting oral anticoagulants (DOACs), also known as
non-vitamin K oral anticoagulants (NOACs), are five drugs
acting on coagulation cascade, without the use of anti-thrombin
as a mediator, subdivided in factor Xa inhibitors (apixaban,
edoxaban, and rivaroxaban) and direct thrombin inhibitors
(argatroban and dabigatran).

Their indication in the clinical practice is as anticoagulants
for primary and secondary prevention of ischaemic stroke, in
patients suffering from non-valvular atrial fibrillation (AF) (1),
but also for prevention and treatment of pulmonary embolism
and deep venous thrombosis (2).

Strokes and cerebrovascular diseases represent the main
cause (30–40%) of symptomatic epilepsy among elderly (3)
and most of these patients need a chronic treatment with
antiepileptic drugs (AEDs). Therefore, it is not rare that some
patients might undergo concomitant treatment AEDs-DOACs
and this co-treatment could lead to pharmacological interactions
with serious consequences for patient’s health. In particular,
AEDs causing a reduced absorption or an increase of DOAC
metabolism can cause a reduced antithrombotic efficacy of these
drugs; conversely, a reduced DOAC metabolism can increase
significantly the risk of bleeding in these patients [(4); and see
below].

The aspect of drug-drug interactions is particularly important
in persons with epilepsy, since optimal seizure control is
often achieved only after different treatment attempts or
using AEDs polytherapy (5). Furthermore, convulsive seizures
expose patients to potential traumatic injuries that can be
more dangerous in patients under anticoagulant treatment.
Consequently, the potential interactions between DOACs and
AEDs represent a field of particular clinical interest.

Aim of this review is to provide an overview on interactions
between DOACs and AEDs using clinical and pharmacokinetic
data. We considered only DOACs that are currently marketed
in EU countries: edoxaban, rivaroxaban, apixaban, and
dabigatran.

METHODS

The articles on clinical series and case reports specifically
addressing the interactions between DOACs and AEDs were
selected starting from a PubMed search with the following
search terms: “eslicarbazepine” or “felbamate” or “gabapentin”
or “lamotrigine” or “levetiracetam” or “oxcarbazepine” or
“perampanel” or “pregabalin” or “retigabine” or “rufinamide” or
“stiripentol” or “tiagabine” or “topiramate” or “lacosamide” or
“vigabatrin” or “zonisamide” or “phenobarbital” or “phenytoin”
or “ethosuximide” or “carbamazepine” or “valproate,” and
“dabigatran” or “rivaroxaban” or “apixaban” or “edoxaban,” with
publication dates between 2005 and 2018. The Flow-Chart in
Figure 1 details the process of inclusion/exclusion of the articles.

Data on pharmacokinetics of AEDs and DOACs for
this review article were collected performing a search on
PubMed using the following search terms: “eslicarbazepine,”
“felbamate,” “gabapentin,” “lamotrigine,” “levetiracetam,”

“oxcarbazepine,” “perampanel,” “pregabalin,” “rufinamide,”
“stiripentol,” “tiagabine,” “topiramate,” “lacosamide,” “vigabatrin,”
“zonisamide,” “phenobarbital,” “phenytoin,” “ethosuximide,”
“carbamazepine,” or “valproate” and “CYP3A5” or “CYP2J2,” or
“CYP3A4” or “P-gp,” or ”P-glycoprotein,” They were considered
in vitro and in vivo experimental studies, and studies in humans
from 1975 to March 2018. Similarly, it was subsequently
performed another PubMed search, from 1999 to March 2018,
for “dabigatran,” “rivaroxaban,” “apixaban,” “edoxaban” and
“CYP3A5,” “CYP2J2,” “CYP3A4,” “P-gp,” “P-glycoprotein.”
To reduce publication bias, we also searched the abstract
proceedings of the international congresses by the International
League Against Epilepsy (ILAE) and by the American Epilepsy
Society.

The latter searches aimed at the definition of pharmacokinetic
parameters and the most salient review papers, together with all
product characteristics (SPCs) of the single drugs, were selected
by the authors based on their experience in the field.

PHARMACOKINETIC OF DOACS

All DOACs pharmacokinetic features are summarized in
Figure 2.

Direct Thrombin Inhibitor
Dabigatran reversibly binds the active site of thrombin and it
is administered as a pro-drug, dabigatran etexilate, since it is
not absorbed by gastrointestinal tract after oral intake because
of its high polarity; the etexilate form is rapidly hydrolyzed by
carboxyl esterases (CES) to the active compound. The intestinal
absorption of dabigatran etexilate, as well as other treated
DOACs, depends on Permeability glycoprotein (P-gp) (6). The
latter, is an ATP-dependent efflux transporter located in the
plasma membrane of many different cell types; it regulates the
absorption of xenobiotics from the gut lumen and is involved
in the hepatic and renal excretion of these substances; it is also
involved in blood-brain barrier permeability to drugs (7).

Bioavailability is 6.5% after administration, the lowest of all
DOACs, is probably due to Pg-p intestinal excretion and low
solubility of the pro-drug considering that it is not a substrate
of cytochrome P-450 system. Considered a 12 h half-life, with a
maximum concentration reduced by 30% after 4–6 h, dabigatran
is administered twice a day (8).

This DOAC is dialyzable considering its very low binding with
plasma proteins (∼30%) and its 80% eliminated by kidneys (75%
unchanged and 4% as active acyl-glucuronide metabolites), the
remaining non-renal excretion is due to conjugation by uridine
diphosphate-glucuronyl-transferase (UGT)2B15. Conjugation
with activated glucuronic acid apparently represents the only
metabolic modification of dabigatran (9). Food has no interaction
with dabigatran, but the concurrent intake could decrease the
plasma peak concentration (8).

Direct Factor Xa Inhibitors
Apixaban, edoxaban and rivaroxaban are selective inhibitors
of Xa factor (FXa) by binding its active site both when free
or thrombin-bound.
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FIGURE 1 | Data collection process for case reports and clinical series on interactions between DOACs and AEDs.

Unlike dabigatran, these are not pro-drugs and have, when
orally administered, an optimal and rapid absorption profile
through the gastrointestinal tract that also depends on P-gp
(9, 10) and this transporter also contributes to the renal excretion
of rivaroxaban (11). The latter have a very high oral bioavailability
(∼90% with food), compared with apixaban and edoxaban (∼50
and∼62% for apixaban and edoxaban, respectively).

Apixaban needs to be administered twice a day, whereas
Edoxaban only once a day with a plasma half-life of 9–
14 and 9–10 h, respectively, after administration of multiple
doses. Rivaroxaban is also administered once a day due to a
persistence of high concentration after 24 h from oral intake. FXa
inhibitors are not dialyzable and plasma protein binding is higher
for rivaroxaban and apixaban (∼93%) compared to edoxaban
(∼55%) and are excreted unchanged for 27, 33, and 50% of their
bioavailable dose, respectively (12–14).

These DOACs are substrates of the cytochrome P-
450 system, and especially the CYP3A4 isoform (15, 16).
In particular, rivaroxaban undergoes CYP3A4/3A5- and
CYP2J2-mediated oxidative metabolism (18 and 14% of
the total absorbed dose, respectively) (17). Apixaban is
primarily metabolized by CYP3A4/3A5 and secondly by
sulpho-transferase (SULT) 1A1, while edoxaban is minimally
metabolized by CYP3A4/3A5 and mainly eliminated unchanged
in bile (40%) (18).

None of the FXa inhibitors have interactions with food, have
been tested in pregnancy and have shown any liver toxicity
but dedicated safety studies should be realized to better define
DOACs drug-induced liver injury (19).

PHARMACOKINETICS OF AEDS

The most important pharmacokinetic interactions of different
AEDs with each other and with other classes of drugs,
involve cytochrome P450 (CYP) and, to a lesser extent, the
uridine diphosphate glucuronosyltransferase (UGT) system (20).
Carbamazepine, phenytoin, and phenobarbital, among first-
generation agents, are inducers of several enzymes such as
CYP1A2, CYP2C9, CYP2C19, and CYP3A4, but also of UGTs
and epoxide hydrolase (21–23).

Lamotrigine does not interfere significantly with drug

metabolizing enzymes at low dosages, but at a dose higher
than 300 mg/day, it has been proven to cause a reduction of

20% of levonorgestrel serum concentration (24). Valproate is
able to inhibit the activity of CYP2C9, and, to a lesser extent
CYP3A4 and CYP2C19, as well as UGT1A4 and UGT2B7 (25).
By contrast, valproate does not inhibit CYP2D6, CYP1A2, and
CYP2E1 (23, 26, 27).

Even though newer AEDs have a limited enzyme-inducing
potential compared with older—generation compounds,
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FIGURE 2 | DOACs pharmacokinetic characteristics. Summary of the pharmacokinetic characteristics of DOACs with focus on the metabolization and elimination

processes. (A) Direct thrombin inhibitor, (B–D) Direct factor Xa inhibitors. CYP, Cytochromes P450; P-gp, P-glycoprotein 1.

some of them are involved in metabolic modifications. In
particular, perampanel (at doses ≥8 mg/day), eslicarbazepine
acetate, felbamate, oxcarbazepine (at doses ≥1,200 mg/
day), topiramate, levetiracetam and rufinamide (at doses
≥400 mg/day) bear weaker enzyme-inducing properties
and may stimulate the activity of CYP3A4 and/or some
UGT isoenzymes (21, 22, 28). Furthermore, oxcarbazepine,
eslicarbazepine, felbamate, and topiramate show a weak
inhibitory activity on CYP2C19 (29); stiripentol, on the other
hand, is a strong inhibitor of CYP3A4, CYP2D6, CYP2C19, and
CYP1A2 (30).

At therapeutic doses, zonisamide inhibits in vitro the
activity of CYP2A6, CYP2C9, CYP2C19, and CYP2E1,
but does not affect significantly CYP3A4, CYP1A2, and
CYP2D6 (21). No data on the induction or inhibition capacity
of ethosuximide, lacosamide, gabapentin, pregabalin, and
vigabatrin, on human CYP or UGT isoenzymes have been
published (21).

Some AEDs affect P-gp functions; in animal studies,
levetiracetam, phenytoin and phenobarbital have been shown to
cause P-gp induction, as well as carbamazepine for which there
are also data in humans (31–33). An in vitro study shows that
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TABLE 1 | Interactions between AEDs and P-gp or CYP3A4/3A5 and CYP2J2 systems.

AEDs P-gp References CYP3A4 CYP3A5/CYP2J2 References

Eslicarbazepine acetate Substrate (in vitro) (35) Weak inductor (in vitro e

vivo)

NR (21)

Felbamate Substrate (in vivo) (36) Weak inductor/No effects (in

vitro)

NR (26, 37)

Gabapentin Not substrate (38) NR NR (21)

Lamotrigine No effects/substrate (39) No effects No effects (40)

Levetiracetam Inductor/substrate (in vivo) (41) Weak inductor (in vitro) No effects (42)

Oxcarbazepine NR Inductor (in vivo e vitro) Inductor 3A5 (in vivo e

vitro)

(43)

Perampanel No effects (44) Weak inductor (in vitro) Weak inductor 3A5

(in vitro)

(28)

Pregabalin No effects (45) No effects No effects (46)

Rufinamide NR Mild induction (in vitro) No effects (47)

Stiripentol NR Inhibitor (in vitro) No effects (48)

Tiagabine NR Substrate No effects (49)

Topiramate No effects/substrate (39) Mild inductor (in vitro) No effects (50)

Lacosamide No effects (51) No effects (in vitro) No effects (52)

Vigabatrin NR No effects No effects (21)

Zonisamide Weak inhibitor (34) No effects/substrate No effects (53)

Phenobarbital Inductor/substrate (54) Inductor No effects (55)

Phenytoin Inductor/substrate (in vivo) (56) Inductor/substrate (in vivo) NR (55)

Ethosuximide NR Substrate NR (26)

Carbamazepine Inductor (in vivo) (57) Substrate/inductor (in vitro

and vivo)

NR (58)

Valproate Inductor/inhibitor (in vitro) (59, 60) Inductor/weak inhibitor

(in vitro)

NR (25, 61)

zonisamide is a weak inhibitor of P-gp with a CI50 of 267µmol/L
(34) All the main evidence on the effects of AEDs on P-gp and
CYP3A4 (obtained from in vivo and in vitro studies) are listed in
Table 1.

The main interaction between DOACs and AEDs are related
to the effects of the two classes of drugs on CYP3A4 and vice-
versa and can be hypothesized by knowing their effects on these
targets; for P-gp, interactions are less intuitive.

CASE REPORTS

We performed a detailed search, including Pubmed publications
and abstract proceedings of the international congresses by
the International League Against Epilepsy (ILAE) and by the
American Epilepsy Society, of all clinical descriptions, without
language limits, concerning all the AEDs and all of the DOACs in
the search. Unfortunately, up to date, there are only 12 clinically
relevant articles available on this topic (Table 2).

Phenytoin
The AED for whichmost of studies and interactions with DOACs
have been reported is phenytoin, which bears relevant clinical
interactions with dabigatran, rivaroxaban, and apixaban. In 2017,
Chang et al. found that in a large cohort of 91.330 patients
suffering from non-valvular AF and treated with dabigatran,
rivaroxaban or apixaban, there was a higher risk of major

bleeding when the patients were taking phenytoin (N-7158) for
concomitant epilepsy, as compared with patients not assuming
this drug with an adjusted incidence rate difference (99%
CI) per 1,000 person-years of 52.31 (32.18–72.44; p < 0.01).
However, this study bears the strong limitations of a Health
Insurance database system analysis (including the lack of detailed
clinical/radiological information on the single patients) (66). In
the same year, Hager et al. (68) described the occurrence of a left
atrial thrombus in a 70-years-old patient whit a clinical history
of hypertension, persistent AF, heterozygous factor V Leiden,
recurrent deep venous thrombosis (DVT), and a pulmonary
embolus, in co-treatment with atenolol, betahistine, diltiazem,
valsartan, phenytoin 300mg orally QD, and dabigatran etexilate
150mg BID.

Phenytoin can affect both the absorption and metabolism
of dabigatran, suggesting that could have led to a decreased
anticoagulant effect and the development of atrial thrombus.
Clinical relevance of this drug interaction has not been
well described; anyway, the co-administration should be
avoided (68). In 2016, Wiggins et al. had hypothesized the
same type of interaction. They showed undetectable serum
levels of dabigatran in a 45-years-old Afro-American male
patient with AF treated also with phenytoin indicating that
this drug could have a significant influence on dabigatran’s
metabolism and that this patient was at high risk for
stroke (67).
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TABLE 2 | Clinical experiences on interaction between DOACs and AEDs.

AEDs Dabigatran Rivaroxaban Apixaban

Eslicarbazepine acetate / / /

Felbamate / / /

Gabapentin / / /

Lamotrigine / / /

Levetiracetam / / /

Oxcarbazepine / (62) /

Perampanel / / /

Pregabalin / / /

Retigabin / / /

Rufinamide / / /

Stiripentol / / /

Tiagabine / / /

Topiramate / / /

Lacosamide / / /

Vigabatrin / / /

Zonisamide / / /

Phenobarbital (63) / (64)

Phenytoin (63)

(66)

(67)

(68)

(65)

(66)

(66)

Ethosuximide / / /

Carbamazepine (69) (70)

(71)

(72)

/

Valproate / (73) /

Similarly, Becerra et al. (65) observed, in the first case
documenting laboratory interaction between rivaroxaban and
phenytoin, that DOAC levels were considerably low in a 48-
years-old woman with cerebral vein thrombosis receiving also
phenytoin, a combined CYP3A4 and P- glycoprotein inducer,
which might reduce rivaroxaban levels (65).

Phenobarbital
Phenobarbital may bear relevant interactions, too. In 2014, Chin
et al. (63) evaluated median dose- corrected steady-state plasma
dabigatran concentration (60 lg/L; range 9–279) in 52 patients
(38–94 years). The dose-corrected concentration in a patient
with co-administration of phenobarbital and dabigatran etixilate
110mg BID was found 3 standard deviations below the cohort
mean (concentration of 9 lg/L; dabigatran = 0.04l g/L per
mg/day, z-score of the log-transformed dabigatran = −3.25).
Authors hypothesized that this could occur via P-gp induction
(63). In 2018, King et al. (64) reported the case of a 77-years-old
patient on low-dose phenobarbital treatment for essential tremor,
who was diagnosed with AF and, after dabigatran (150mg BID)
failure, she was switched to apixaban 5mg BID.

In the following year, she suffered from two distinct episodes
of cardioembolic stroke, and apixaban serum levels were lower
(89 ng/mL approximately 11 h post-dose) than the expected
therapeutic concentration. Furthermore, after phenobarbital
discontinuation, the DOAC concentration rose to normal levels

(361 ng/mL; unknown time post-dose) confirming a direct effect
(64).

Carbamazepine
Carbamazepine may affect the anticoagulant efficacy of
dabigatran and rivaroxaban. In 2016, Laureano et al. described
2 patients, a 53-years-old man with epilepsy and AF (CHADS2
score of 2) and a 66-years-old woman with bipolar disorder,
previous pulmonary embolism, and right leg deep vein
thrombosis, receiving carbamazepine and dabigatran 150mg
BID. In both patients, dabigatran serum concentrations were
reduced (steady state 24 ng/mL and 20 ng/mL, respectively),
effect probably due to induction of P-gp by carbamazepine
(69). In 2017, Stollberger and Finsterer, described the case
of a 55-years-old Caucasian male, suffering from recurrent
venous thrombosis in treatment with rivaroxaban (10mg BID)
and carbamazepine (900 mg/die) for structural epilepsy with
complex partial seizures and secondary generalization. He was
hospitalized because of increasing pain and swelling of his right
leg starting spontaneously. Sonography showed a thrombosis
of the right popliteal and femoral vein and analysis of drug
concentrations showed a serum-carbamazepine level in the
therapeutic range while anti-Xa activity was low (<20 ng/ml)
(70). Independently, in 2018, Burden et al. reported the case
of a 71-years-old woman with clinical history of pulmonary
embolism, subjected to the same therapy as the previous case.
Presented to the Emergency department with acute onset
shortness of breath, chest pain and palpitations, computed
tomographic pulmonary angiography (CTPA) revealed multiple
bilateral pulmonary emboli. Carbamazepine was hypothesized to
be responsible of the DOAC inefficacy as the anti Xa activity was
reduced in both cases (71).

Finally, Risselada et al. reported in 2013, only in Dutch
language, a case of a 53-years-old man who underwent a partial
knee arthroplasty and 4 days before developing a pulmonary
embolism, whose symptoms started 1 day after he was switched
from prophylactic dalteparin 5000 IE QD to rivaroxaban 10mg
one a day. Being the patient also in therapy with carbamazepine
600mg BID for epilepsy, the authors of the case report
hypothesized that pulmonary embolism was caused by a decrease
in serum rivaroxaban levels due to the enzymatic induction of
CYP3A4 by carbamazepine (72).

Valproate and Oxcarbazepine
Rivaroxaban efficacy may also be affected by valproate and
oxcarbazepine. In 2014, Stollberger and Finsterer described the
case of an 88-years-old female patient, taking valproate and
rivaroxaban 15 mg/die together, and whose anti-Xa activity
was higher than expected. Indeed, coagulation tests after 28 h
rivaroxaban-intake showed INR 2.26, PT 35%, aPTT 38.3 s and
anti-Factor Xa-activity 2.00 U/m.

Even after the DOAC withdrawal, it took several days
before coagulation was normalized, despite the short half-life of
rivaroxaban (5–9 h) (16). The authors themselves acknowledged
a potential key role of the patient’s poor renal function
and low body-mass-index (eGFR 34–42 ml/min/1.73 m2 and
BMI = 19.95), but they could not exclude a drug interaction
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between rivaroxaban and valproate (73). The potential role
of oxcarbazepine as a rivaroxaban inhibitor was suggested by
Serra et al. (62), which described the case of a 68 years old
man, suffering from permanent AF who had been put on
rivaroxaban treatment, before undergoing external electrical
cardioversion. He eventually did not undergo cardioversion
because he developed a left atrial thrombosis despite DOAC
treatment. The authors supposed that the thrombotic event was
due to the interaction between rivaroxaban and oxcarbazepine,
which the patient was taking for epilepsy, and which, as a strong
CYP3A4 inducer, could have reduced rivaroxaban efficacy (62).

DISCUSSION AND CONCLUSIONS

In this focused review, we summarized the clinical data available
on the potential interactions existing between DOACs and AEDs.
Although most of the clinical descriptions are merely anecdotal
and do not allow further speculations, we can summarize that
some old AEDs might modify DOACs efficacy; phenytoin,
carbamazepine and phenobarbital might reduce significantly
all DOACs efficacy while for oxcarbazepine and valproate,
there are some data demonstrating a reduction of rivaroxaban
efficacy, even though an interaction with other DOACs cannot
be excluded. Finally, the interaction between phenobarbital
and dabigatran has been better studied and it seems very
convincing that phenobarbital reduces significantly dabigatran
blood levels and efficacy. Based on their well-known enzymatic
induction effects, phenytoin, carbamazepine and phenobarbital
all potentially decrease the efficacy of rivaroxaban, apixaban, and
edoxaban. One case report suggests that this would be the case
also for dabigatran, even though this interaction was not easily
predicted by knowing dabigatran CYP metabolism. This further
emphasizes that specific predictions on the interactions between
DOACs and AEDs are difficult, that many more clinical data are
needed and that predictions based only on theoretical models
might lead to wrong assumptions. However, theoretically based
on the well-known effects of DOACs and AEDs on CYP and P-
gp, several interactions can be hypothesized and should be kept
in mind when starting a therapy with AEDs and DOACs.

Concerning newer AEDs, it can be speculated that those
not affecting significantly CYP or Pg-p are not likely to affect
DOACs efficacy and thus may be safer; this would be the case
for lamotrigine or pregabalin. Lacosamide and zonisamide do
not affect significantly CYP 3A4 activity, but their effects on
Pg-p are not well-known yet. If the latter will be shown to be
weak, they might be a good choice for patients on DOACs.
For levetiracetam (which is otherwise considered quite neutral
and “safe” in terms of pharmacokinetics interactions with many
common drugs), an effect on CYP has not been shown but, since
this AED may induce Pg-p activity, and is a substrate itself of
this transporter, its safety in patients taking DOACs still needs
to be demonstrated. Valproate and oxcarbazepine are AEDs still
largely used in epileptic patients. Concerning valproate, its use
is likely to affect significantly the pharmacokinetics of DOACs,
as it affects significantly both CYP and Pg-p activity in vitro;
the only case report available on valproate and rivaroxaban

apparently contradicts this speculation, as it showed a reduced
anti-Xa activity in 1 patient taking both drugs. However, the renal
comorbidity of this patient probably played a role in these results.
Oxcarbazepine, which is predicted to induce CYP activity, might
also affect in a relevant way DOACs metabolism.

In conclusion, when a clinician has to choose an AED in
a patient already taking DOACs, he might potentially choose
among different second and third generation compounds which
possess similar, significant, antiepileptic activity.

On other hand, it might be more complicated to start
anticoagulants in patients with an established epilepsy that
is well-controlled by old AEDs, and especially phenytoin,
carbamazepine, phenobarbital or valproate. In these patients it
might be risky, in terms of seizures recurrence, to modify an
established AED. Such risk might be even increase when they are
under anticoagulant drugs, i.e., at higher risk of major bleeding
due to traumatic injury. Furthermore, previously pharmaco-
resistant epileptic patients often take a combination of two or
more of these AEDs at the same time, which further complicates
predicting their effect on drug metabolism. In these patients,
it might be still a reasonable clinical choice to use classical
anticoagulants, such as warfarin, and tailoring its dosage in the
single subject based on their INR values.

It is clear that population-based studies are needed to establish
whether the pharmacological interactions between the two
classes of drugs really represent a problem of clinical interest.
Potentially, these aspects could be addressed at least in two
ways. First, in order to establish the safest pharmacological
combinations, it would be useful to perform cohort’s studies
comparing the compatibility between the most frequently
administered AEDs and DOACs, starting at least with the ones
which have the lower influence on CYP3A4, CYP3A5, and Pg-
p (e.g., lamotrigine, pregabalin, lacosamide or levetiracetam).
Another approach might consist in assessing in vivo, in the
single patients taking both DOACs and AEDs, the efficacy
of DOACs. Actually, one of the main reasons why DOACs
have been developed is indeed to avoid the problem of strict
coagulation monitoring, which is needed for patients using
Vitamin-K antagonists. Some epileptic patients might represent
one of the special populations in which such monitoring is
indicated also for DOACs (which are considered, in any case
safer, in terms of bleeding risk, than old anticoagulants, and thus
to be preferred also in this population of subjects). Unfortunately,
nowadays it is difficult to evaluate in vivo the antithrombotic
effects of DOACs, and especially for those acting on factor Xa.
These tests are not routinely available in some laboratories and
their use needs a specific expertise. Moreover, mainly due to
technical reasons, there are still differences in the results obtained
among different laboratories and even among different specific
DOACs within the same laboratory (74, 75). Hopefully, when
in the future these methods (or different ones) will be more
reproducible and approachable by different laboratories, it will
be possible to assess in the single patient the existence of potential
interactions between the DOAC and the AED(s) he/she is taking;
once in the single patient such interaction has been excluded, it is
likely that they would not need further evaluations (as usual for
DOACs).

Frontiers in Neurology | www.frontiersin.org 7 December 2018 | Volume 9 | Article 1067

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Galgani et al. Interactions Between DOACs and AEDs

In conclusion, the risk of drug-drug interaction might
be significant among patients taking AEDs and DOACs
simultaneously, at least for some AEDs; future studies will help
to better quantify this risk and to facilitate an optimal therapeutic
handling of these patients.

LIMITATIONS

The main limitations of this review consist in the lack of in
vivo/clinical studies specifically addressing interactions between
most DOACs andmost AEDs, and the results reported aremainly

speculative based on the knowledge of their pharmacokinetics
features. Concerning some AEDs, we do not even know these
effects in detail, and thus, their interaction with DOACs are not
even predictable yet. The few data available from case reports are
not strong enough to allow drawing definitive conclusions.
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