13 research outputs found

    Environmentally Relevant Concentrations of 17α-Ethinylestradiol (EE2) Interfere With the Growth Hormone (GH)/Insulin-Like Growth Factor (IGF)-I System in Developing Bony Fish

    Get PDF
    The aim of this study was to evaluate whether effects of environmental estrogens on fish growth and reproduction may be mediated via modulating the growth hormone (GH)/insulin-like growth factor I (IGF-I) system. To this end, developing male and female monosex populations of tilapia were exposed to 17α-ethinylestradiol (EE2) at 5 and 25 ng EE2/l water from 10-day postfertilization (DPF) until 100 DPF. Under exposure to both EE2 concentrations, sex ratio shifted toward more females and body length, and weight were significantly reduced in males. The growth-reducing effect was associated with significant changes in hepatic IGF-I expression, both in males and females and with significant alterations of IGF-I mRNA and GH mRNA in the brain. The changes in IGF-I and GH mRNA were accompanied by altered estrogen receptor α (ERα) expression in brain and liver. These findings point to an influence of estrogenic exposure on the endocrine GH/IGF-I axis. In addition, the EE2 treatment resulted in significant changes of ERα and IGF-I expression in ovaries and testis, suggesting that the estrogens interact not only with the endocrine but also with the autocrine/paracrine part of the IGF-I system. Overall, our results provide evidence that EE2 at environmentally relevant concentrations is able to interfere with the GH/IGF-I system in bony fish and that the impairing effects of estrogens reported on fish growth and reproductive functions may rather result from a cross talk between the sex steroid and the IGF-I system than be toxicologica

    Organ-specific expression of IGF-I during early development of bony fish as revealed in the tilapia, Oreochromis niloticus , by in situ hybridization and immunohistochemistry: indication for the particular importance of local IGF-I

    Get PDF
    The cellular sites of insulin-like growth factor I (IGF-I) synthesis in the early developing tilapia (0-140 days post fertilization, DPF) were investigated. IGF-I mRNA and peptide appeared in liver as early as 4 DPF and in gastro-intestinal epithelial cells between 5-9 DPF. In exocrine pancreas, the expression of IGF-I started at 4 DPF and continued until 90DPF. IGF-I production was detected in islets at 6 DPF in non-insulin cells and occurred throughout life. In renal tubules and ducts, IGF-I production started at 8 DPF. IGF-I production in chondrocytes had its onset at 4 DPF, was more pronounced in growing regions and was also found in adults. IGF-I mRNA and peptide appeared in the cytoplasm of skeletal muscle cells at 4 DPF. In gill chloride cells, IGF-I production started at 6 DPF. At 13 DPF, IGF-I was detected in cardiac myocytes. IGF-I-producing epidermal cells appeared at 5 DPF. In brain and ganglia, IGF-I was expressed in virtually all neurones from 6 to 29 DPF, their number decreasing with age. Neurosecretory IGF-I-immunoreactive axons were first seen in the neurohypophysis around 17 DPF. Endocrine cells of the adenohypophysis exhibited IGF-I mRNA at 28 DPF and IGF-I immunoreactivity at 40 DPF. Thus, IGF-I appeared early (4-5 DPF), first in liver, the main source of endocrine IGF-I, and then in organs involved in growth or metabolism. The expression of IGF-I was more pronounced during development than in juvenile and adult life. Local IGF-I therefore seems to have a high functional impact in early growth, metabolism and organogenesi

    Distinct organ-specific up- and down-regulation of IGF-I and IGF-II mRNA in various organs of a GH-overexpressing transgenic Nile tilapia

    Get PDF
    Several lines of GH-overexpressing fish have been produced and characterized concerning organ integrity, growth, fertility and health but few and contradictory data are available on IGF-I that mediates most effects of GH. Furthermore, nothing is known on IGF-II. Thus, the expression of both IGFs in liver and various extrahepatic sites of adult transgenic (GH-overexpressing) tilapia and age-matched wild-type fish was determined by real-time PCR. Both IGF-I and IGF-II mRNA were found in all organs investigated and were increased in gills, kidney, intestine, heart, testes, skeletal muscle and brain of the transgenics (IGF-I: 1.4-4-fold; IGF-II: 1.7-4.2-fold). Except for liver, brain and testis the increase in IGF-I mRNA was higher than that in IGF-II mRNA. In pituitary, no significant change in IGF-I or IGF-II mRNA was detected. In spleen, however, IGF-I and IGF-II mRNA were both decreased in the transgenics, IGF-I mRNA even by the 19-fold. In agreement, in situ hybridisation revealed a largely reduced number of IGF-I mRNA-containing leukocytes and macrophages when compared to wild-type. These observations may contribute to better understanding the reported impaired health of GH-transgenic fish. Growth enhancement of the transgenics may be due to the increased expression of both IGF-I and IGF-II in extrahepatic sites. It is also reasonable that the markedly enhanced expression of liver IGF-II mRNA that may mimick an early developmental stage is a further reason for increased growt

    Differential expression of IGF-I mRNA and peptide in the male and female gonad during early development of a bony fish, the tilapia Oreochromis niloticus

    No full text
    Insulin-like growth factor I (IGF-I) plays a key role in the complex system that regulates bony fish growth, differentiation, and reproduction. The major source of circulating IGF-I is liver, but IGF-I-producing cells also occur in other organs, including the gonads. Because no data are available on the potential production sites of IGF-I in gonad development, developmental stages of monosex breedings of male and female tilapia from 0 day postfertilization (DPF) to 90 DPF were investigated for the production sites of IGF-I at the peptide (immunohistochemistry) and mRNA (in situ hybridization) level. IGF-I mRNA first appeared in somatic cells of the male and female gonad anlage at 7 DPF followed by IGF-I peptide around 9-10 DPF. Gonad anlagen were detected from 7 DPF. Starting at 7 DPF, IGF-I peptide but no IGF-I mRNA was observed in male and female primordial germ cells (PGCs) provided that IGF-I mRNA was not under the detection level, this observation may suggest that IGF-I originates from the somatic cells and is transferred to the PGCs or is of maternal origin. While in female germ cells IGF-I mRNA and peptide appeared at 29 DPF, in male germ cells both were detected as late as at 51-53 DPF. It is assumed that the production of IGF-I in the germ cells is linked to the onset of meiosis that in tilapia ovary starts at around 28 DPF and in testes at around 52-53 DPF. In adult testis, IGF-I mRNA and peptide occurred in the majority of spermatogonia and spermatocytes as well as in Leydig cells, the latter indicating a role of IGF-I in the synthesis of male sex steroids. In adult ovary, IGF-I mRNA and IGF-I peptide were always present in small and previtellogenic oocytes but only IGF-I peptide infrequently occurred in oocytes at the later stages. IGF-I expression appeared in numerous granulosa and some theca cells of follicles at the lipid stage and persisted in follicles with mature oocytes. The results suggest a crucial role of local IGF-I in the formation, differentiation and function of tilapia gonads

    Emotion

    No full text
    Meyer W-U, Horstmann G. Emotion. In: Psychologie. Berlin-Heidelberg: Springer; 2006: 231-238

    Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective

    No full text
    Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H. Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective. Brain, Behavior and Evolution. 2017;90(2):98-116

    Oestrogen and insulin-like growth factors during the reproduction and growth of the tilapia Oreochromis niloticus and their interactions

    Full text link
    Oestrogens and insulin-like growth factors (Igfs) play both a central role in the regulation of reproduction and growth and can interact especially in species showing a clear-cut sex-linked growth dimorphism (SGD) like in tilapia. Aromatase is essential in ovarian differentiation and oogenesis since it controls oestrogen synthesis. During tilapia sex differentiation, aromatase cyp19a1a expression increases from 9 days post-fertilization (dpf), resulting in high oestradiol level. High temperature, exogenous androgens or aromatase inhibitors override genetic sex differentiation inducing testes development through the suppression of cyp19a1a gene expression and aromatase activity. Supplementation with 17ß-oestradiol (E2) of gonadectomized juveniles induced a sustained and higher E2 plasma level than in intact or gonadectomized controls and both sexes showed reduced growth. Juvenile and mature females treated with the aromatase inhibitor 1,4,6-androstatriene-3,17-dione had 19% lower E2 plasma level compared to controls and they showed a 32% increased growth after 28 days of treatment. Altogether, these data suggest that E2 inhibits female growth leading to the SGD. Regarding Igf-1, mRNA and peptide appeared in liver at _4 dpf and then in organs involved in growth and metabolism, indicating a role in early growth, metabolism and organogenesis. Gonad igf-1 showed an early expression and the peptide could be detected at _7 dpf in somatic cells. It appeared in germ cells at the onset of ovarian (29 dpf) and testicular (52 dpf) meiosis. In testis, Igf-1 together with steroids may regulate spermatogenesis whereas in ovary it participates in steroidogenesis regulation. Igf-1 and Igf-2 promote proliferation of follicular cells and oocyte maturation. Igf-3 expression is gonad specific and localized in the ovarian granulosa or testicular interstitial cells. In developing gonads igf-3 is up-regulated in males but down-regulated in females. In contrast, bream Gh injections increased igf-1 mRNA in male and female liver and ovaries but gonadal igf-3 was not affected. Thus, local Igf-1 and Igf-2 may play crucial roles in the formation, development and function of gonads while Igf-3 depending on the species is involved in male and female reproduction. Furthermore, precocious ethynylestradiol (EE) exposure induced lasting effects on growth, through pituitary gh inhibition, local suppression of igf-1 expression and in testis only down-regulation of igf-3 mRNA. In conclusion, SGD in tilapia may be driven through an inhibitory effect due to E2 synthesis in female and involving Igfs regulation. (RĂ©sumĂ© d'auteur
    corecore