1,641 research outputs found
Ab initio GW many-body effects in graphene
We present an {\it ab initio} many-body GW calculation of the self-energy,
the quasiparticle band plot and the spectral functions in free-standing undoped
graphene. With respect to other approaches, we numerically take into account
the full ionic and electronic structure of real graphene and we introduce
electron-electron interaction and correlation effects from first principles.
Both non-hermitian and also dynamical components of the self-energy are fully
taken into account. With respect to DFT-LDA, the Fermi velocity is
substantially renormalized and raised by a 17%, in better agreement with
magnetotransport experiments. Furthermore, close to the Dirac point the linear
dispersion is modified by the presence of a kink, as observed in ARPES
experiments. Our calculations show that the kink is due to low-energy single-particle excitations and to the plasmon. Finally, the GW
self-energy does not open the band gap.Comment: 5 pages, 4 figures, 1 tabl
Synthetic cathinones related fatalities: an update
Synthetic cathinones, more commonly known as "bath salts", are synthetic drugs chemically related to cathinone, a psychostimulant found in the khat plant. They are the first most consumed products among new psychoactive substances, which cause psychostimulant and hallucinogenic effects determining a number of fatalities worldwide. In this paper, we have systematically reviewed cases of synthetic cathinones-related fatalities analytically confirmed, which have occurred in the last few years.OBJECTIVE: Synthetic cathinones,
more commonly known as “bath salts”, are synthetic
drugs chemically related to cathinone, a
psychostimulant found in the khat plant. They are
the first most consumed products among new
psychoactive substances, which cause psychostimulant
and hallucinogenic effects determining
a number of fatalities worldwide. In this paper, we
have systematically reviewed cases of synthetic
cathinones-related fatalities analytically confirmed,
which have occurred in the last few years.
MATERIALS AND METHODS: Relevant scientific
articles were identified in Medline, Cochrane
Central, Scopus, Web of Science and Institutional/
government websites up to November 2017
using the following keywords: synthetic cathinones,
mephedrone, methylenedioxypyrovalerone,
MDPV, methylone, ethylone, buthylone, fatal
intoxication, fatalities and death.
RESULTS: In total, 20 citations met the criteria
for inclusion, representing several fatal cases
with analytically confirmed synthetic cathinones
in biological sample/s of the deceased. The
death was attributed to hyperthermia, hypertension,
cardiac arrest and more in general to the
classic serotonin syndrome. Only rarely did the
concentration of the parent drug causing fatality
overcome the value of 1 mg/L in post-mortem
biological fluids.
CONCLUSIONS: Abuse of synthetic cathinones
still represents a serious public health issue.
Systematic clinical studies on both the animal
and human model are lacking; therefore, the
only available data are from the users who experience
the possible hazardous consequences.
Analytical methodologies for the identification
of parent compounds and eventual metabolites
both in ante-mortem and post-mortem cases
need to be developed and validated. Analytical
data should be shared through different communication
platforms with the aim of stopping this
serious health threat for drug users
Structural validation of a realistic wing structure: the RIBES test article
Several experimental test cases are available in literature to study and validate fluid structure interaction methods. They, however,
focus the attention mainly on replicating typical cruising aerodynamic conditions forcing the adoption of fully steel made models
able to operate with the high loads generated in high speed facilities. This translates in a complete loss of similitude with typical
realistic aeronautical wing structures configurations. To reverse this trend, and to better study the aerolastic mechanism from a structural point of view, an aeroelastic measurement campaign was carried within the EU RIBES project. A half wing model for wind tunnel tests was designed and manufactured replicating a typical metallic wing box structure, producing a database of loads, pressure, stress and deformation measurements. In this paper the design, manufacturing and validation activities performed within the RIBES project are described, with a focus on the structural behavior of the test article. All experimental data and numerical models are made freely available to the scientific community
Distributed Intelligent MEMS: Progresses and Perspectives
International audienceMEMS research has until recently focused mainly on the engineering process, resulting in interesting products and a growing market. To fully realize the promise of MEMS, the next step is to add embedded intelligence. With embedded intelligence, the scalability of manufacturing will enable distributed MEMS systems consisting of thousands or millions of units which can work together to achieve a common goal. However, before such systems can become a reallity, we must come to grips with the challenge of scalability which will require paradigm-shifts both in hardware and software. Furthermore, the need for coordinated actuation, programming, communication and mobility management raises new challenges in both control and programming. The objective of this article is to report the progresses made by taking the example of two research projects and by giving the remaining challenges and the perspectives of distributed intelligent MEMS
Lazy AC-Pattern Matching for Rewriting
We define a lazy pattern-matching mechanism modulo associativity and
commutativity. The solutions of a pattern-matching problem are stored in a lazy
list composed of a first substitution at the head and a non-evaluated object
that encodes the remaining computations. We integrate the lazy AC-matching in a
strategy language: rewriting rule and strategy application produce a lazy list
of terms.Comment: In Proceedings WRS 2011, arXiv:1204.531
Relativistic theory of magnetic scattering of x rays: Application to ferromagnetic iron
We present a detailed description of a first-principles formalism for magnetic scattering of circularly polar- ized x rays from solids in the framework of the fully relativistic spin-polarized multiple-scattering theory. The scattering amplitudes are calculated using a standard time-dependent perturbation theory to second order in the electron-photon interaction vertex. Particular attention is paid to understanding the relative importance of the positive- and negative-energy solutions of the Dirac equation to the scattering amplitude. The advantage of the present theory as compared with other recent works on magnetic x-ray scattering is that, being fully relativistic, spin-orbit coupling and spin-polarization effects are treated on an equal footing. Second, the electron Green’s function expressed in terms of the path operators in the multiple-scattering theory allows us to include the contribution of the crystalline environment to the scattering amplitude. To illustrate the use of the method we have done calculations on the anomalous magnetic scattering at the K , L_II , and L_III absorption edges of ferromagnetic iron
Linear plasmon dispersion in single-wall carbon nanotubes and the collective excitation spectrum of graphene
We have measured a strictly linear pi-plasmon dispersion along the axis of
individualized single wall carbon nanotubes, which is completely different from
plasmon dispersions of graphite or bundled single wall carbon nanotubes.
Comparative ab initio studies on graphene based systems allow us to reproduce
the different dispersions. This suggests that individualized nanotubes provide
viable experimental access to collective electronic excitations of graphene,
and it validates the use of graphene to understand electronic excitations of
carbon nanotubes. In particular, the calculations reveal that local field
effects (LFE) cause a mixing of electronic transitions, including the 'Dirac
cone', resulting in the observed linear dispersion
Glutathione-Induced Release of Zeatin From Functionalized Gold Nanovectors
The paper shows our preliminary results on the different spectroscopic behavior of three types of gold nanoparticles (obtained respectively by chemical synthesis, laser ablation in pure water and laser ablation in a citrate solution) modified with trans-zeatin, a plant growth regulator, in presence of glutathione. The reaction of ligand substitution of the adsorbed zeatin with glutathione is studied through surface enhanced Raman spectroscopy and is revealed to occur only when citrate-laser ablated gold nanoparticles are employed, making these particles potentially good candidates as vehicles of zeatin inside plant cells for future agricultural applications
Impact of Serotonin 2C Receptor Null Mutation on Physiology and Behavior Associated with Nigrostriatal Dopamine Pathway Function
The impact of serotonergic neurotransmission on brain dopaminergic pathways has substantial relevance to many neuropsychiatric disorders. A particularly prominent role has been ascribed to the inhibitory effects of serotonin 2C receptor (5-HT2CR) activation on physiology and behavior mediated by the mesolimbic dopaminergic pathway, particularly in the terminal region of the nucleus accumbens. The influence of this receptor subtype on functions mediated by the nigrostriatal dopaminergic pathway is less clear. Here we report that a null mutation eliminating expression of 5-HT2CRs produces marked alterations in the activity and functional output of this pathway. 5-HT2CR mutant mice displayed increased activity of substantia nigra pars compacta (SNc) dopaminergic neurons, elevated baseline extracellular dopamine concentrations in the dorsal striatum (DSt), alterations in grooming behavior, and enhanced sensitivity to the stereotypic behavioral effects of D-amphetamine and GBR 12909. These psychostimulant responses occurred in the absence of phenotypic differences in drug-induced extracellular dopamine concentration, suggesting a phenotypic alteration in behavioral responses to released dopamine. This was further suggested by enhanced behavioral responses of mutant mice to the D1 receptor agonist SKF 81297. Differences in DSt D1 or D2 receptor expression were not found, nor were differences in medium spiny neuron firing patterns or intrinsic membrane properties following dopamine stimulation. We conclude that 5-HT2CRs regulate nigrostriatal dopaminergic activity and function both at SNc dopaminergic neurons and at a locus downstream of the DSt
- …
