33 research outputs found

    Relative efficiency in the branch network of a Greek bank : a quantitative analysis

    Get PDF
    Measuring and evaluating the efficient use of resources of Bank branches plays a decisive role in a Bank’s strategic planning. Usually, efficiency is measured by using accounting ratios, such as labor productivity, capital productivity, return on assets etc. When these ratios are properly used, they provide significant information regarding the effective operation of the branch, and contribute in carrying out intrabank comparisons and comparisons over a period of time. However, by using such ratios, an important part of the branch operation remains uncovered: the measurement of the effective use of the resources. New mathematical programming models that are related with the degree at which each branch makes use of its resources, are applied to deal with the weaknesses of such ratios. This study discuss the limitations of using accounting ratio analysis for assessing performance and, presents and interprets the results from the application of mathematical programming models in a sample of branches of a Greek Bank.peer-reviewe

    Variable structure robot control systems: The RAPP approach

    Get PDF
    International audienceThis paper presents a method of designing variable structure control systems for robots. As the on-board robot computational resources are limited, but in some cases the demands imposed on the robot by the user are virtually limitless, the solution is to produce a variable structure system. The task dependent part has to be exchanged, however the task governs the activities of the robot. Thus not only exchange of some task-dependent modules is required, but also supervisory responsibilities have to be switched. Such control systems are necessary in the case of robot companions, where the owner of the robot may demand from it to provide many services.

    20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years

    Get PDF
    The administration of endocrine therapy for 5 years substantially reduces recurrence rates during and after treatment in women with early-stage, estrogen-receptor (ER)-positive breast cancer. Extending such therapy beyond 5 years offers further protection but has additional side effects. Obtaining data on the absolute risk of subsequent distant recurrence if therapy stops at 5 years could help determine whether to extend treatment

    Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials

    Get PDF
    Background Neoadjuvant chemotherapy (NACT) for early breast cancer can make breast-conserving surgery more feasible and might be more likely to eradicate micrometastatic disease than might the same chemotherapy given after surgery. We investigated the long-term benefits and risks of NACT and the influence of tumour characteristics on outcome with a collaborative meta-analysis of individual patient data from relevant randomised trials. Methods We obtained information about prerandomisation tumour characteristics, clinical tumour response, surgery, recurrence, and mortality for 4756 women in ten randomised trials in early breast cancer that began before 2005 and compared NACT with the same chemotherapy given postoperatively. Primary outcomes were tumour response, extent of local therapy, local and distant recurrence, breast cancer death, and overall mortality. Analyses by intention-to-treat used standard regression (for response and frequency of breast-conserving therapy) and log-rank methods (for recurrence and mortality). Findings Patients entered the trials from 1983 to 2002 and median follow-up was 9 years (IQR 5–14), with the last follow-up in 2013. Most chemotherapy was anthracycline based (3838 [81%] of 4756 women). More than two thirds (1349 [69%] of 1947) of women allocated NACT had a complete or partial clinical response. Patients allocated NACT had an increased frequency of breast-conserving therapy (1504 [65%] of 2320 treated with NACT vs 1135 [49%] of 2318 treated with adjuvant chemotherapy). NACT was associated with more frequent local recurrence than was adjuvant chemotherapy: the 15 year local recurrence was 21·4% for NACT versus 15·9% for adjuvant chemotherapy (5·5% increase [95% CI 2·4–8·6]; rate ratio 1·37 [95% CI 1·17–1·61]; p=0·0001). No significant difference between NACT and adjuvant chemotherapy was noted for distant recurrence (15 year risk 38·2% for NACT vs 38·0% for adjuvant chemotherapy; rate ratio 1·02 [95% CI 0·92–1·14]; p=0·66), breast cancer mortality (34·4% vs 33·7%; 1·06 [0·95–1·18]; p=0·31), or death from any cause (40·9% vs 41·2%; 1·04 [0·94–1·15]; p=0·45). Interpretation Tumours downsized by NACT might have higher local recurrence after breast-conserving therapy than might tumours of the same dimensions in women who have not received NACT. Strategies to mitigate the increased local recurrence after breast-conserving therapy in tumours downsized by NACT should be considered—eg, careful tumour localisation, detailed pathological assessment, and appropriate radiotherapy

    Wax-Printed Fluidic Controls for Delaying and Accelerating Fluid Transport on Paper-Based Analytical Devices

    No full text
    In this work, we explore a new method for controlling fluid transport rate on paper-based analytical devices that enables both the delay and the acceleration of fluid flow. The delays were incorporated by wax printing linear patterns of variable width within the flow channel and melted to penetrate the paper. In this manner, the surface tension of the fluid decreases while its contact angle increases, causing a pressure drop along the fluid path that reduces capillary flow. The acceleration of flow was accomplished by overlaying hydrophobic stripes (prepared by wax printing and melting the wax) on the hydrophilic path (top or top–bottom). In this manner, the fluid was repelled from two dimensions (vertical and applicate), increasing the flow rate. The combination of these methods on the same devices could adjust wicking time in intermediate time internals. The method enabled a wide timing of fluid transport, accomplishing a change in wicking times that extended from −41% to +259% compared to open paper channels. As a proof of concept, an enzymatic assay of glucose was used to demonstrate the utility of these fluid control methods in kinetic methods of analysis

    Generic Assay of Sulfur-Containing Compounds Based on Kinetics Inhibition of Gold Nanoparticle Photochemical Growth

    No full text
    This work describes a new, equipment-free, generic method for the determination of sulfur-containing compounds that is based on their ability to slow down the photoreduction kinetics of gold ions to gold nanoparticles. The method involves tracking the time required for a red coloration to appear in the tested sample, indicative of the formation of gold nanoparticles, and compare the measured time relative to a control sample in the absence of the target analyte. The method is applicable with minimal and simple steps requiring only two solutions (i.e., a buffer and a gold solution), a source of light (UV or visible), and a timer. The method responds to a large variety of sulfur-containing compounds including thiols, thioesters, disulfides, thiophosphates, metal–sulfur bonds, and inorganic sulfur and was therefore applied to the determination of a variety of compounds such as dithiocarbamate and organophosphorous pesticides, biothiols, pharmaceutically active compounds, and sulfides in different samples such as natural waters and wastewater, biological fluids, and prescription drugs. The analytical figures of merit of the method include satisfactory sensitivity (quantitation limits at the low μM levels), good recoveries (from 93 to 109%), and satisfactory reproducibility (from 4.8 to 9.8%). The method is easily adoptable to both laboratory settings and nonlaboratory conditions for quantitative and semiquantitative analysis, respectively, is user-friendly even for the minimally trained user, and can be performed with limited resources at low cost

    Ultratrace Determination of Silver, Gold, and Iron Oxide Nanoparticles by Micelle Mediated Preconcentration/Selective Back-Extraction Coupled with Flow Injection Chemiluminescence Detection

    No full text
    A new method has been developed for the ultrasensitive determination of silver, gold, and iron oxide nanoparticles in environmental samples. Cloud point extraction was optimized and used as a means to extract and preconcentrate all nanoparticle species simultaneously from the same sample. The extracted nanoparticles were sequentially isolated from the surfactant-rich phase by a new selective back-extraction procedure and dissociated into their precursor metal ions. Each ion solution was injected in a flow injection analysis (FIA) manifold, accommodating the chemiluminogenic oxidation of luminol, in order to amplify chemiluminescence (CL) emission in a manner proportional to its concentration. Under the optimum experimental conditions, the detection limits were brought down to the picomolar and femtomolar concentration levels with satisfactory analytical features in terms of precision (2.0–13.0%), selectivity against dissolved ions, and recoveries (74–114%). The method was successfully applied to the determination of iron oxide, silver, and gold nanoparticles in environmental samples of different complexity, ranging from unpolluted river water to raw sewage. The developed method could also serve as a basis for future deployment of molecular spectrometry detectors for the selective determination and speciation analysis of nanoparticles in environmental applications

    Programming Fluid Transport in Paper-Based Microfluidic Devices Using Razor-Crafted Open Channels

    No full text
    Manipulating fluid transport in microfluidic, paper-based analytical devices (μPADs) is an essential prerequisite to enable multiple timed analytical steps on the same device. Current methods to control fluid distribution mainly rely on controlling how slowly the fluid moves within a device or by activating an on/off switch to flow. In this Article, we present an easy approach for programming fluid transport within paper-based devices that enables both acceleration as well as delay of fluid transport without active pumping. Both operations are programmed by carving open channels either longitudinally or perpendicularly to the flow path using a craft-cutting tool equipped with a knife blade. Channels are crafted after μPADs fabrication enabling the end user to generate patterns of open-channels on demand by carving the porous material of the paper without cutting or removing the paper substrate altogether. Parameters to control the acceleration or delay of flow include the orientation, length, and number of open channels. Using this method, accelerated as well as reduced fluid transport rates were achieved on the same device. This methodology was applied to μPADs for multiple and time-programmable assays for metal ion determination
    corecore