18 research outputs found
Selective COX-2 inhibitory properties of dihydrostilbenes from liquorice leaves--in vitro assays and structure/activity relationship study.
Three dihydrostilbenes belonging to the polyphenol pool characterized in the leaves of Sicilian liquorice ( Glycyrrhiza glabra L.) have been tested for their antioxidant and anti-inflammatory activity. The three dihydrostilbenes (PA-82, GA-23, DO-07) were in vitro tested to evaluate their capability to scavenge the stable radical 1,1-diphenyl-2-picrylhydrazyl (DPPH), and to decrease thromboxane B2 (TxB2) and prostaglandin E2 (PGE2) release in human whole blood samples. On the basis of the observed capability of these compounds to affect the cell COX-1/COX-2 pathway, a molecular docking study was carried out in order to understand in detail the ability of these compounds to bind to COX-1 and COX-2. The results show that the liquorice dihydrostilbenes are preferred ligands for COX-2 rather than for COX-1, providing a good rational for the observed selectivity in ex vivo experiments. Therefore, they appear to be good candidates for employment in human therapy against inflammation-related pathological conditions
A palladium iodide-catalyzed oxidative aminocarbonylation–heterocyclization approach to functionalized benzimidazoimidazoles
A novel carbonylative approach to the synthesis of functionalized 1H-benzo[d]imidazo[1,2-a]imidazoles is presented. The method consists of the oxidative aminocarbonylation of N-substituted-1-(prop-2-yn-1-yl)-1H-benzo[d]imidazol-2-amines, carried out in the presence of secondary nucleophilic amines, to give the corresponding alkynylamide intermediates, followed by in situ conjugated addition and double-bond isomerization, to give 2-(1-alkyl-1H-benzo[d]imidazo[1,2-a]imidazol-2-yl)acetamides. Products were obtained in good to excellent yields (64–96%) and high turnover numbers (192–288 mol of product per mol of catalyst) under relatively mild conditions (100 °C under 20 atm of a 4:1 mixture of CO–air), using a simple catalytic system, consisting of PdI2 (0.33 mol %) in conjunction with KI (0.33 equiv)
Clinical features and outcomes of elderly hospitalised patients with chronic obstructive pulmonary disease, heart failure or both
Background and objective: Chronic obstructive pulmonary disease (COPD) and heart failure (HF) mutually increase the risk of being present in the same patient, especially if older. Whether or not this coexistence may be associated with a worse prognosis is debated. Therefore, employing data derived from the REPOSI register, we evaluated the clinical features and outcomes in a population of elderly patients admitted to internal medicine wards and having COPD, HF or COPD + HF. Methods: We measured socio-demographic and anthropometric characteristics, severity and prevalence of comorbidities, clinical and laboratory features during hospitalization, mood disorders, functional independence, drug prescriptions and discharge destination. The primary study outcome was the risk of death. Results: We considered 2,343 elderly hospitalized patients (median age 81 years), of whom 1,154 (49%) had COPD, 813 (35%) HF, and 376 (16%) COPD + HF. Patients with COPD + HF had different characteristics than those with COPD or HF, such as a higher prevalence of previous hospitalizations, comorbidities (especially chronic kidney disease), higher respiratory rate at admission and number of prescribed drugs. Patients with COPD + HF (hazard ratio HR 1.74, 95% confidence intervals CI 1.16-2.61) and patients with dementia (HR 1.75, 95% CI 1.06-2.90) had a higher risk of death at one year. The Kaplan-Meier curves showed a higher mortality risk in the group of patients with COPD + HF for all causes (p = 0.010), respiratory causes (p = 0.006), cardiovascular causes (p = 0.046) and respiratory plus cardiovascular causes (p = 0.009). Conclusion: In this real-life cohort of hospitalized elderly patients, the coexistence of COPD and HF significantly worsened prognosis at one year. This finding may help to better define the care needs of this population
Design of New Schiff Bases and Their Heavy Metal Ion Complexes for Environmental Applications: A Molecular Dynamics and Density Function Theory Study
Schiff bases (SBs) are important ligands in coordination chemistry due to their unique structural properties. Their ability to form complexes with metal ions has been exploited for the environmental detection of emerging water contaminants. In this work, we evaluated the complexation ability of three newly proposed SBs, 1–3, by complete conformational analysis, using a combination of Molecular Dynamics and Density Functional Theory studies, to understand their ability to coordinate toxic heavy metal (HMs) ions. From this study, it emerges that all the ligands present geometries that make them suitable to complex HMs through the N-imino moieties or, in the case of 3, with the support of the oxygen atoms of the ethylene diether chain. In particular, this ligand shows the most promising coordination behavior, particularly with Pb2+
Investigation of Base-free Copper-Catalysed Azide–Alkyne Click Cycloadditions (CuAAc) in Natural Deep Eutectic Solvents as Green and Catalytic Reaction Media
The click cycloaddition reaction of azides and alkynes affording 1,2,3-triazoles is a widely used and effective chemical transformation, applied to obtain relevant products in medicine, biology and materials science. In this work, a set of Natural Deep Eutectic Solvents (NADESs) as green and “active” reaction media, has been investigated in the copper-catalysed azide–alkyne cycloaddition reactions (CuAAc). The use of these innovative solvents has shown to improve the reaction effectiveness, giving excellent yields. NADESs proved to be “active” in these transformations for the absence of added bases in all the performed reactions and in several cases, for their reducing capabilities. The reactions outcomes were rationalized by DFT calculations which demonstrated the involvement of H-bonds between DESs and alkynes as well as a stabilization of copper catalytic intermediates. The green experimental conditions, namely the absence of a base, the low temperatures, the lowering of reagents and the possibility of recycling of the green solvents, outline the great potential of NADESs for CuAAc and in general, for green organic synthesis. </p
Synthesis and Biological Evaluation of 2,3,4-Triaryl-1,2,4-oxadiazol-5-ones as p38 MAPK Inhibitors
A series of azastilbene derivatives, characterized by the presence of the 1,2,4-oxadiazole-5-one system as a linker of the two aromatic rings of stilbenes, have been prepared as novel potential inhibitors of p38 MAPK. Biological assays indicated that some of the synthesized compounds are endowed with good inhibitory activity towards the kinase. Molecular modeling data support the biological results showing that the designed compounds possess a reasonable binding mode in the ATP binding pocket of p38α kinase with a good binding affinity
Phytotoxic Potential and Biological Activity of Three Synthetic Coumarin Derivatives as New Natural-Like Herbicides
Coumarin is a natural compound well known for its phytotoxic potential. In the search for new herbicidal compounds to manage weeds, three synthetic derivatives bearing the coumarin scaffold (1–3), synthesized by a carbonylative organometallic approach, were in vitro assayed on germination and root growth of two noxious weeds, Amaranthus retroflexus and Echinochloa crus-galli. Moreover, the synthetic coumarins 1–3 were also in vitro assayed on seedlings growth of the model species Arabidopsis thaliana to identify the possible physiological targets. All molecules strongly affected seed germination and root growth of both weeds. Interestingly, the effects of synthetic coumarins on weed germination were higher than template natural coumarin, pointing out ED50 values ranging from 50–115 µM. Moreover, all synthetic coumarins showed a strong phytotoxic potential on both Arabidopsis shoot and root growth, causing a strong reduction in shoot fresh weight (ED50 values ≤ 60 µM), accompanied by leaf development and a decrease in pigment content. Furthermore, they caused a strong alteration in root growth (ED50 values ≤ 170 µM) and morphology with evident alterations in root tip anatomy. Taken together, our results highlight the promising potential herbicidal activity of these compounds
Pyrimidine 2,4-Diones in the Design of New HIV RT Inhibitors
The pyrimidine nucleus is a versatile core in the development of antiretroviral agents. On this basis, a series of pyrimidine-2,4-diones linked to an isoxazolidine nucleus have been synthesized and tested as nucleoside analogs, endowed with potential anti-HIV (human immunodeficiency virus) activity. Compounds 6a−c, characterized by the presence of an ethereal group at C-3, show HIV reverse transcriptase (RT) inhibitor activity in the nanomolar range as well as HIV-infection inhibitor activity in the low micromolar with no toxicity. In the same context, compound 7b shows only a negligible inhibition of RT HIV
C-5’-Triazolyl-2’-oxa-3’-aza-4’a-carbanucleosides: Synthesis and biological evaluation
A novel series of 2’-oxa-3’-aza-4’a-carbanucleosides, featured with a triazole linker at the 5’-position, has been developed by exploiting a click chemistry reaction of 5’-azido-2’-oxa-3’-aza-4’a-carbanucleosides with substituted alkynes. Biological tests indicate an antitumor activity for the synthesized compounds: most of them inhibit cell proliferation of Vero, BS-C-1, HEp-2, MDCK, and HFF cells with a CC50 in the range of 5.0–40 μM. The synthesized compounds do not show any antiviral activity
Synthesis and Biological Properties of 5-(1H-1,2,3-Triazol-4-yl)isoxazolidines: A New Class of C-Nucleosides
A novel series of C-nucleosides, featuring the presence of a 1,2,3-triazole ring linked to an isoxazolidine system, has been designed as mimetics of the pyrimidine nucleobases. An antiproliferative effect was observed for compounds 17a and 17b: the growth inhibitory effect reaches the 50% in HepG2 and HT-29 cells and increases up to 56% in the SH-SY5Y cell line after 72 h of incubation at a 100 µM concentration