110 research outputs found

    Extension of the B3LYP - Dispersion-Correcting Potential Approach to the Accurate Treatment of both Inter- and Intramolecular Interactions

    Full text link
    We recently showed that dispersion-correcting potentials (DCPs), atom-centered Gaussian-type functions developed for use with B3LYP (J. Phys. Chem. Lett. 2012, 3, 1738-1744) greatly improved the ability of the underlying functional to predict non-covalent interactions. However, the application of B3LYP-DCP for the {\beta}-scission of the cumyloxyl radical led a calculated barrier height that was over-estimated by ca. 8 kcal/mol. We show in the present work that the source of this error arises from the previously developed carbon atom DCPs, which erroneously alters the electron density in the C-C covalent-bonding region. In this work, we present a new C-DCP with a form that was expected to influence the electron density farther from the nucleus. Tests of the new C-DCP, with previously published H-, N- and O-DCPs, with B3LYP-DCP/6-31+G(2d,2p) on the S66, S22B, HSG-A, and HC12 databases of non-covalently interacting dimers showed that it is one of the most accurate methods available for treating intermolecular interactions, giving mean absolute errors (MAEs) of 0.19, 0.27, 0.16, and 0.18 kcal/mol, respectively. Additional testing on the S12L database of complexation systems gave an MAE of 2.6 kcal/mol, showing that the B3LYP-DCP/6-31+G(2d,2p) approach is one of the best-performing and feasible methods for treating large systems dominated by non-covalent interactions. Finally, we showed that C-C making/breaking chemistry is well-predicted using the newly developed DCPs. In addition to predicting a barrier height for the {\beta}-scission of the cumyloxyl radical that is within 1.7 kcal/mol of the high-level value, application of B3LYP-DCP/6-31+G(2d,2p) to 10 databases that include reaction barrier heights and energies, isomerization energies and relative conformation energies gives performance that is amongst the best of all available dispersion-corrected density-functional theory approaches

    Oscillations in meta-generalized-gradient approximation potential energy surfaces for dispersion-bound complexes

    Get PDF
    © 2009 American Institute of Physics. The electronic version of this article is the complete one and can be found at: http://dx.doi.org/10.1063/1.3177061DOI: 10.1063/1.3177061Meta-generalized-gradient approximations (meta-GGAs) in density-functional theory are exchange-correlation functionals whose integrands depend on local density, density gradient, and also the kinetic-energy density. It has been pointed out by Johnson et al. [Chem. Phys. Lett. 394, 334 (2004) ] that meta-GGA potential energy curves in dispersion-bound complexes are susceptible to spurious oscillations unless very large integration grids are used. This grid sensitivity originates from the saddle-point region of the density near the intermonomer midpoint. Various dimensionless ratios involving the kinetic-energy density, found in typical meta-GGAs, may be ill-behaved in this region. Grid sensitivity thus arises if the midpoint region is sampled by too sparse a grid. For most meta-GGAs, standard grids do not suffice. Care must be taken to avoid this problem when using, or constructing, meta-GGAs

    Dangling-bond charge qubit on a silicon surface

    Full text link
    Two closely spaced dangling bonds positioned on a silicon surface and sharing an excess electron are revealed to be a strong candidate for a charge qubit. Based on our study of the coherent dynamics of this qubit, its extremely high tunneling rate ~ 10^14 1/s greatly exceeds the expected decoherence rates for a silicon-based system, thereby overcoming a critical obstacle of charge qubit quantum computing. We investigate possible configurations of dangling bond qubits for quantum computing devices. A first-order analysis of coherent dynamics of dangling bonds shows promise in this respect.Comment: 17 pages, 3 EPS figures, 1 tabl

    A survey of recent results for the generalizations of ordinary differential equations

    Get PDF
    This is a review paper on recent results for different types of generalized ordinary differential equations. Its scope ranges from discontinuous equations to equations on time scales. We also discuss their relation with inclusion and highlight the use of generalized integration to unify many of them under one single formulation

    Hydrogen atom transfer (HAT) processes promoted by the quinolinimide-N-oxyl radical: a kinetic and theoretical study

    Get PDF
    A kinetic study of the hydrogen atom transfer (HAT) reactions from a series of organic compounds to the quinolinimide-N-oxyl radical (QINO) was performed in CH3CN. The HAT rate constants are significantly higher than those observed with the phthalimide- N-oxyl radical (PINO) as a result of enthalpic and polar effects due to the presence of the N-heteroaromatic ring in QINO. The relevance of polar effects is supported by theoretical calculations conducted for the reactions of the two N-oxyl radicals with toluene, which indicate that the HAT process is characterized by a significant degree of charge transfer permitted by the π-stacking that occurs between the toluene and the N-oxyl aromatic rings in the transition state structures. An increase in the HAT reactivity of QINO was observed in the presence of 0.15 M HClO4 and 0.15 M Mg(ClO4)2 due to the protonation or complexation with the Lewis acid of the pyridine nitrogen that leads to a further decrease in the electron density in the N-oxyl radical. These results fully support the use of N-hydroxyquinolinimide as a convenient substitute for N-hydroxyphthalimide in the catalytic aerobic oxidations of aliphatic hydrocarbons characterized by relatively high C–H bond dissociation energies

    Computational modeling of extended systems

    No full text
    Advancements in computing architecture and in theoretical techniques allow for the modeling of complex, extended systems. This section of the 50th anniversary issue of Theoretical Chemistry Accounts highlights modeling work performed on nanostructured systems and underscores the enormous potential for synergy between theory and experiment in modern nanoscience.Peer reviewed: YesNRC publication: Ye

    Radical Enzymes Control the Chemistry of Their Highly Reactive Intermediates Using the Quantum Coulombic Effect

    No full text
    Here, we report an exquisite strategy that the B12 enzymes exploit to manipulate the reactivity of their radical intermediate (Adenosyl radical). Based on the quantum-mechanic calculations, these enzymes utilize a little known long-ranged through space quantum Coulombic effect (QCE). The QCE causes the radical to acquire an electronic structure that contradicts the Aufbau Principle: The singly-occupied molecular orbital (SOMO) is no longer the highest-occupied molecular orbital (HOMO) and the radical is unable to react with neighbouring substrates. The dynamic nature of the enzyme and its structure is expected to be such that the reactivity of the radical is not restored until it is moved into close proximity of the target substrate. We found that the hydrogen bonding interaction between the nearby conserved glutamate residue and the ribose ring of Adenosyl radical plays a crucial role in manipulating the orbital orderin
    • …
    corecore