358 research outputs found

    Inclusive photon production at forward rapidities in proton-proton collisions at s\sqrt{s} = 0.9, 2.76 and 7 TeV

    Get PDF
    See paper for full list of authors – 24 pages, 10 captioned figures, 4 tables, authors from page 19, figures at http://aliceinfo.cern.ch/ArtSubmission/node/1024International audienceThe multiplicity and pseudorapidity distributions of inclusive photons have been measured at forward rapidities (2.3<η<3.92.3 < \eta < 3.9) in proton-proton collisions at three center-of-mass energies, s=0.9\sqrt{s}=0.9, 2.76 and 7 TeV using the ALICE detector. It is observed that the increase in the average photon multiplicity as a function of beam energy is compatible with both a logarithmic and a power-law dependence. The relative increase in average photon multiplicity produced in inelastic pp collisions at 2.76 and 7 TeV center-of-mass energies with respect to 0.9 TeV are 37.2% ±\pm 0.3% (stat) ±\pm 8.8% (sys) and 61.2% ±\pm 0.3% (stat) ±\pm 7.6% (sys), respectively. The photon multiplicity distributions for all center-of-mass energies are well described by negative binomial distributions. The multiplicity distributions are also presented in terms of KNO variables. The results are compared to model predictions, which are found in general to underestimate the data at large photon multiplicities, in particular at the highest center-of-mass energy. Limiting fragmentation behavior of photons has been explored with the data, but is not observed in the measured pseudorapidity range

    Suppression of High-p_T Neutral Pion Production in Central Pb+Pb Collisions at sqrt{s_NN} = 17.3 GeV Relative to p+C and p+Pb Collisions

    Get PDF
    Neutral pion transverse momentum spectra were measured in p+C and p+Pb collisions at sqrt{s_NN} = 17.4 GeV at mid-rapidity 2.3 < eta_lab < 3.0 over the range 0.7< p_T < 3.5 GeV/c. The spectra are compared to pi0 spectra measured in Pb+Pb collisions at sqrt{s_NN} = 17.3 GeV in the same experiment. For a wide range of Pb+Pb centralities (N_part < 300) the yield of pi0's with p_T > 2 GeV/c is larger than or consistent with the p+C or p+Pb yields scaled with the number of nucleon-nucleon collisions (N_coll), while for central Pb+Pb collisions with N_part > 350 the pi0 yield is suppressed.Comment: 5 pages, 4 figure

    Azimuthal Angle Correlations for Rapidity Separated Hadron Pairs in d+Au Collisions at sqrt(s_NN) = 200 GeV

    Get PDF
    We report on two-particle azimuthal angle correlations between charged hadrons at forward/backward (deuteron/gold going direction) rapidity and charged hadrons at mid-rapidity in deuteron-gold (d+Au) and proton-proton (p+p) collisions at sqrt(s_NN) = 200 GeV. Jet structures are observed in the correlations which we quantify in terms of the conditional yield and angular width of away side partners. The kinematic region studied here samples partons in the gold nucleus carrying nucleon momentum fraction x~0.1 to x~0.01. Within this range, we find no x dependence of the jet structure in d+Au collisions.Comment: 330 authors, 6 pages text, 4 figures, no tables. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Central Pb+Pb Collisions at 158 A GeV/c Studied by Pion-Pion Interferometry

    Full text link
    Two-particle correlations have been measured for identified negative pions from central 158 AGeV Pb+Pb collisions and fitted radii of about 7 fm in all dimensions have been obtained. A multi-dimensional study of the radii as a function of kT is presented, including a full correction for the resolution effects of the apparatus. The cross term Rout-long of the standard fit in the Longitudinally CoMoving System (LCMS) and the vl parameter of the generalised Yano-Koonin fit are compatible with 0, suggesting that the source undergoes a boost invariant expansion. The shapes of the correlation functions in Qinv and Qspace have been analyzed in detail. They are not Gaussian but better represented by exponentials. As a consequence, fitting Gaussians to these correlation functions may produce different radii depending on the acceptance of the experimental setup used for the measurement.Comment: 13 pages including 10 figure

    Search for Disoriented Chiral Condensates in 158 AGeV Pb+Pb Collisions

    Get PDF
    The restoration of chiral symmetry and its subsequent breaking through a phase transition has been predicted to create regions of Disoriented Chiral Condensates (DCC). This phenomenon has been predicted to cause anomalous fluctuations in the relative production of charged and neutral pions in high-energy hadronic and nuclear collisions. The WA98 experiment has been used to measure charged and photon multiplicities in the central region of 158 AGeV Pb+Pb collisions at the CERN SPS. In a sample of 212646 events, no clear DCC signal can be distinguished. Using a simple DCC model, we have set a 90% C.L. upper limit on the maximum DCC production allowed by the data.Comment: 20 Pages, LaTeX, uses elsart.cls, 8 eps figures included, submitted to Physics Letters

    System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV

    Get PDF
    We present azimuthal angle correlations of intermediate transverse momentum (1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) = 62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and semi-central collisions in all the systems. The broadening and peak location are found to depend upon the number of participants in the collision, but not on the collision energy or beam nuclei. These results are consistent with sound or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The invariant differential cross section for inclusive electron production in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4 <= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the inclusive electron spectrum from semileptonic decays of hadrons carrying heavy flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via three independent methods. The resulting electron spectrum from heavy flavor decays is compared to recent leading and next-to-leading order perturbative QCD calculations. The total cross section of charm quark-antiquark pair production is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Proximity effect at superconducting Sn-Bi2Se3 interface

    Get PDF
    We have investigated the conductance spectra of Sn-Bi2Se3 interface junctions down to 250 mK and in different magnetic fields. A number of conductance anomalies were observed below the superconducting transition temperature of Sn, including a small gap different from that of Sn, and a zero-bias conductance peak growing up at lower temperatures. We discussed the possible origins of the smaller gap and the zero-bias conductance peak. These phenomena support that a proximity-effect-induced chiral superconducting phase is formed at the interface between the superconducting Sn and the strong spin-orbit coupling material Bi2Se3.Comment: 7 pages, 8 figure

    Nuclear Modification of Electron Spectra and Implications for Heavy Quark Energy Loss in Au+Au Collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The PHENIX experiment has measured mid-rapidity transverse momentum spectra (0.4 < p_T < 5.0 GeV/c) of electrons as a function of centrality in Au+Au collisions at sqrt(s_NN)=200 GeV. Contributions from photon conversions and from light hadron decays, mainly Dalitz decays of pi^0 and eta mesons, were removed. The resulting non-photonic electron spectra are primarily due to the semi-leptonic decays of hadrons carrying heavy quarks. Nuclear modification factors were determined by comparison to non-photonic electrons in p+p collisions. A significant suppression of electrons at high p_T is observed in central Au+Au collisions, indicating substantial energy loss of heavy quarks.Comment: 330 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore