214 research outputs found

    A waypoint-based mission planner for a farmland coverage with an aerial robot - a precision farming tool

    Get PDF
    Remote sensing (RS) with aerial robots is becoming more usual in every day time in Precision Agriculture (PA) practices, do to their advantages over conventional methods. Usually, available commercial platforms providing off-the-shelf waypoint navigation are adopted to perform visual surveys over crop fields, with the purpose to acquire specific image samples. The way in which a waypoint list is computed and dispatched to the aerial robot when mapping non empty agricultural workspaces has not been yet discussed. In this paper we propose an offline mission planner approach that computes an efficient coverage path subject to some constraints by decomposing the environment approximately into cells. Therefore, the aim of this work is contributing with a feasible waypoints-based tool to support PA practice

    AproximaciĂłn a los conocimientos que tiene el alumnado al finalizar COU acerca de los materiales geolĂłgicos

    Get PDF
    The answers given by 200 Geology students to a set of Multiple Choice questions on geological materials (both: rocks and minerals) are presented. The result of this test shows that there are some relevant aspects that remain unsufficiently known by the students after finishing COU. The necessity of reducing the syllabuses to avoid this fact is pointed out

    Sobre l'ofici de l'arquitectura

    Get PDF

    Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer

    Full text link
    [EN] Electrochemical impedance spectroscopy (EIS) is a very powerful tool to study the behavior of electrochemical systems. According to OhmÂżs generalized law, the impedance concept is only valid if the linearity condition is met. In the case that the linearity condition is not achieved, the obtained impedance spectra will present distortions which may lead to biased or even erroneous results and conclusions. In this work, an experimental quantification of the effect of nonlinearities on EIS spectra was performed in order to determine the order of magnitude of the effect of the nonlinearity of the system on the obtained spectra of the cathodic electrode of an alkaline electrolyzer.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).Giner-Sanz, J.; Ortega, E.; PĂ©rez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells. 17(3):391-401. https://doi.org/10.1002/fuce.201600137S39140117

    Optimization of the Perturbation Amplitude for EIS Measurements Using a Total Harmonic Distortion Based Method

    Full text link
    [EN] Ohm's generalized law defines the concept of impedance. This law, and thus the definition itself, are only valid if the system fulfills the linearity condition. However, electrochemical systems are typically highly nonlinear. Consequently, the linearity condition can only be achieved in these systems if a low perturbation amplitude is used for performing EIS measurements. Nevertheless, the use of low amplitude perturbations leads to low signal-to-noise ratios, which result in high measurement errors. The concept of optimum amplitude arises from this tradeoff: the perturbation has to have an amplitude big enough in order to minimize the measurement errors (i.e. maximize the SNR), but at the same time, the perturbation has to have an amplitude small enough to avoid the generation of significant nonlinear effects that would distort the measured EIS spectra. In a previous work, a linearity assessment quantitative method based on the total harmonic distortion parameter was developed. In this work, the aforementioned THD method was applied for the perturbation amplitude selection for EIS measurements in a highly nonlinear model system: the cathodic electrode of an alkaline water electrolyzer. The THD method successfully obtained the optimum amplitudes both, for a constant amplitude strategy and for a frequency dependent strategy. The THD method also allowed to obtain the noise structure and to quantify the nonlinear effects. This method is slightly superior to the U-P method, a method based on the harmonic analysis of the output signal that was developed in earlier works. (C) 2018 The Electrochemical Society.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).Giner-Sanz, JJ.; Ortega Navarro, EM.; PĂ©rez-Herranz, V. (2018). Optimization of the Perturbation Amplitude for EIS Measurements Using a Total Harmonic Distortion Based Method. Journal of The Electrochemical Society. 165(10):E488-E497. https://doi.org/10.1149/2.1021810jesSE488E49716510Sacco, A. (2017). Electrochemical impedance spectroscopy: Fundamentals and application in dye-sensitized solar cells. Renewable and Sustainable Energy Reviews, 79, 814-829. doi:10.1016/j.rser.2017.05.159Macdonald, J. R. (1992). Impedance spectroscopy. Annals of Biomedical Engineering, 20(3), 289-305. doi:10.1007/bf02368532Yuksel, R., Uysal, N., Aydinli, A., & Unalan, H. E. (2018). Paper Based, Expanded Graphite/Polypyrrole Nanocomposite Supercapacitors Free from Binders and Current Collectors. Journal of The Electrochemical Society, 165(2), A283-A290. doi:10.1149/2.1051802jesWang, C., Xiong, Y., Wang, H., Yang, N., Jin, C., & Sun, Q. (2018). «Pickles Method» Inspired Tomato Derived Hierarchical Porous Carbon for High-Performance and Safer Capacitive Output. Journal of The Electrochemical Society, 165(5), A1054-A1063. doi:10.1149/2.1001805jesZhou, X., Cao, L., Li, Z., Zhang, M., Kang, W., & Cheng, B. (2018). Rapid Synthesis of 3D Porous Nitrogen-Doped Carbon Nanospheres (N-CNSs) and Carbon Nanoboxes (CNBs) for Supercapacitor Electrodes. Journal of The Electrochemical Society, 165(5), A918-A923. doi:10.1149/2.0761805jesRanjith, P. M., Rao, M. T., Sapra, S., Suni, I. I., & Srinivasan, R. (2018). On the Anodic Dissolution of Tantalum and Niobium in Hydrofluoric Acid. Journal of The Electrochemical Society, 165(5), C258-C269. doi:10.1149/2.0691805jesJi, G., MacĂ­a, L. F., Allaert, B., Hubin, A., & Terryn, H. (2018). Odd Random Phase Electrochemical Impedance Spectroscopy to Study the Corrosion Behavior of Hot Dip Zn and Zn-Alloy Coated Steel Wires in Sodium Chloride Solution. Journal of The Electrochemical Society, 165(5), C246-C257. doi:10.1149/2.0741805jesHorvath, D., & Simpson, M. F. (2018). Electrochemical Monitoring of Ni Corrosion Induced by Water in Eutectic LiCl-KCl. Journal of The Electrochemical Society, 165(5), C226-C233. doi:10.1149/2.0391805jesBertocci, U. (1997). Noise Resistance Applied to Corrosion Measurements. Journal of The Electrochemical Society, 144(1), 31. doi:10.1149/1.1837361Bertocci, U. (1997). Noise Resistance Applied to Corrosion Measurements. Journal of The Electrochemical Society, 144(1), 37. doi:10.1149/1.1837362Bertocci, U. (1997). Noise Resistance Applied to Corrosion Measurements. Journal of The Electrochemical Society, 144(8), 2786. doi:10.1149/1.1837896Vijayakumar, E., Kang, S.-H., & Ahn, K.-S. (2018). Facile Electrochemical Synthesis of Manganese Cobalt Sulfide Counter Electrode for Quantum Dot-Sensitized Solar Cells. Journal of The Electrochemical Society, 165(5), F375-F380. doi:10.1149/2.1211805jesKharel, P. L., Zamborini, F. P., & Alphenaar, B. W. (2018). Enhancing the Photovoltaic Performance of Dye-Sensitized Solar Cells with Rare-Earth Metal Oxide Nanoparticles. Journal of The Electrochemical Society, 165(3), H52-H56. doi:10.1149/2.1311802jesGong, C., Hong, X., Xiang, S., Wu, Z., Sun, L., Ye, M., & Lin, C. (2018). NiS2Nanosheet Films Supported on Ti Foils: Effective Counter Electrodes for Quantum Dot-Sensitized Solar Cells. Journal of The Electrochemical Society, 165(3), H45-H51. doi:10.1149/2.0171803jesMitra, D., Trinh, P., Malkhandi, S., Mecklenburg, M., Heald, S. M., Balasubramanian, M., & Narayanan, S. R. (2018). An Efficient and Robust Surface-Modified Iron Electrode for Oxygen Evolution in Alkaline Water Electrolysis. Journal of The Electrochemical Society, 165(5), F392-F400. doi:10.1149/2.1371805jesYoon, S., Kim, J., Lim, J.-H., & Yoo, B. (2018). Cobalt Iron-Phosphorus Synthesized by Electrodeposition as Highly Active and Stable Bifunctional Catalyst for Full Water Splitting. Journal of The Electrochemical Society, 165(5), H271-H276. doi:10.1149/2.1221805jesFrey, C. E., Fang, Q., Sebold, D., Blum, L., & Menzler, N. H. (2018). A Detailed Post Mortem Analysis of Solid Oxide Electrolyzer Cells after Long-Term Stack Operation. Journal of The Electrochemical Society, 165(5), F357-F364. doi:10.1149/2.0961805jesGiner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137Atar, N., & Yola, M. L. (2018). Core-Shell Nanoparticles/Two-Dimensional (2D) Hexagonal Boron Nitride Nanosheets with Molecularly Imprinted Polymer for Electrochemical Sensing of Cypermethrin. Journal of The Electrochemical Society, 165(5), H255-H262. doi:10.1149/2.1311805jesWippermann, K., Giffin, J., & Korte, C. (2018). In Situ Determination of the Water Content of Ionic Liquids. Journal of The Electrochemical Society, 165(5), H263-H270. doi:10.1149/2.0991805jesZhou, W.-H., Wang, H.-H., Li, W.-T., Guo, X.-C., Kou, D.-X., Zhou, Z.-J., 
 Wu, S.-X. (2018). Gold Nanoparticles Sensitized ZnO Nanorods Arrays for Dopamine Electrochemical Sensing. Journal of The Electrochemical Society, 165(12), G3001-G3007. doi:10.1149/2.0011811jesNakpetpoon, W., Vongsetskul, T., Limthongkul, P., & Tammawat, P. (2018). Disodium Terephthalate Ultrafine Fibers as High Performance Anode Material for Sodium-Ion Batteries under High Current Density Conditions. Journal of The Electrochemical Society, 165(5), A1140-A1146. doi:10.1149/2.0821805jesLandesfeind, J., Eldiven, A., & Gasteiger, H. A. (2018). Influence of the Binder on Lithium Ion Battery Electrode Tortuosity and Performance. Journal of The Electrochemical Society, 165(5), A1122-A1128. doi:10.1149/2.0971805jesCheng, Q., & Zhang, Y. (2018). Multi-Channel Graphite for High-Rate Lithium Ion Battery. Journal of The Electrochemical Society, 165(5), A1104-A1109. doi:10.1149/2.1171805jesXia, S., Li, F., Cheng, F., Li, X., Sun, C., Liu, J.-J., & Hong, G. (2018). Synthesis of Spherical Fluorine Modified Gradient Li-Ion Battery Cathode Material LiNi0.80Co0.15Al0.05O2by Simple Solid Phase Method. Journal of The Electrochemical Society, 165(5), A1019-A1026. doi:10.1149/2.1021805jesGarsany, Y., Atkinson, R. W., Sassin, M. B., Hjelm, R. M. E., Gould, B. D., & Swider-Lyons, K. E. (2018). Improving PEMFC Performance Using Short-Side-Chain Low-Equivalent-Weight PFSA Ionomer in the Cathode Catalyst Layer. Journal of The Electrochemical Society, 165(5), F381-F391. doi:10.1149/2.1361805jesGiner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2018). Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell. Journal of Power Sources, 379, 328-337. doi:10.1016/j.jpowsour.2018.01.066Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2018). Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell. Journal of Power Sources, 381, 84-93. doi:10.1016/j.jpowsour.2018.01.093Liu, H., George, M. G., Ge, N., Muirhead, D., Shrestha, P., Lee, J., 
 Bazylak, A. (2018). Microporous Layer Degradation in Polymer Electrolyte Membrane Fuel Cells. Journal of The Electrochemical Society, 165(6), F3271-F3280. doi:10.1149/2.0291806jesOrazem M. E. Tribollet B. , Electrochemical Impedance Spectroscopy, John Wiley & Sons, Hoboken (2008).Lasia A. , Electrochemical Impedance Spectroscopy and its applications, Springer, London (2014).Barsoukov E. Macdonald J. R. , Impedance Spectroscopy. Theory, experiment and applications, John Wiley & Sons, New Jersey (2005).Choi, J.-H., Park, J.-S., & Moon, S.-H. (2002). Direct Measurement of Concentration Distribution within the Boundary Layer of an Ion-Exchange Membrane. Journal of Colloid and Interface Science, 251(2), 311-317. doi:10.1006/jcis.2002.8407Macdonald, D. D., Sikora, E., & Engelhardt, G. (1998). Characterizing electrochemical systems in the frequency domain. Electrochimica Acta, 43(1-2), 87-107. doi:10.1016/s0013-4686(97)00238-7Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163Hirschorn, B., Tribollet, B., & Orazem, M. E. (2008). On Selection of the Perturbation Amplitude Required to Avoid Nonlinear Effects in Impedance Measurements. Israel Journal of Chemistry, 48(3-4), 133-142. doi:10.1560/ijc.48.3-4.133Victoria, S. N., & Ramanathan, S. (2011). Effect of potential drifts and ac amplitude on the electrochemical impedance spectra. Electrochimica Acta, 56(5), 2606-2615. doi:10.1016/j.electacta.2010.12.007Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society, 164(13), H918-H924. doi:10.1149/2.1451713jesGiner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141Gode, P., Jaouen, F., Lindbergh, G., Lundblad, A., & Sundholm, G. (2003). Influence of the composition on the structure and electrochemical characteristics of the PEFC cathode. Electrochimica Acta, 48(28), 4175-4187. doi:10.1016/s0013-4686(03)00603-0Yuan, X., Sun, J. C., Wang, H., & Zhang, J. (2006). AC impedance diagnosis of a 500W PEM fuel cell stack. Journal of Power Sources, 161(2), 929-937. doi:10.1016/j.jpowsour.2006.07.020FernĂĄndez Pulido, Y., Blanco, C., AnseĂĄn, D., GarcĂ­a, V. M., Ferrero, F., & Valledor, M. (2017). Determination of suitable parameters for battery analysis by Electrochemical Impedance Spectroscopy. Measurement, 106, 1-11. doi:10.1016/j.measurement.2017.04.022Fasmin, F., & Srinivasan, R. (2015). Detection of nonlinearities in electrochemical impedance spectra by Kramers–Kronig Transforms. Journal of Solid State Electrochemistry, 19(6), 1833-1847. doi:10.1007/s10008-015-2824-9Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4159. doi:10.1149/1.2048479Boukamp, B. A. (1995). A Linear Kronig-Kramers Transform Test for Immittance Data Validation. Journal of The Electrochemical Society, 142(6), 1885. doi:10.1149/1.2044210BOUKAMP, B., & ROSSMACDONALD, J. (1994). Alternatives to Kronig-Kramers transformation and testing, and estimation of distributions. Solid State Ionics, 74(1-2), 85-101. doi:10.1016/0167-2738(94)90440-5Orazem, M. E., & Tribollet, B. (2008). An integrated approach to electrochemical impedance spectroscopy. Electrochimica Acta, 53(25), 7360-7366. doi:10.1016/j.electacta.2007.10.075Shukla, P. K., Orazem, M. E., & Crisalle, O. D. (2004). Validation of the measurement model concept for error structure identification. Electrochimica Acta, 49(17-18), 2881-2889. doi:10.1016/j.electacta.2004.01.047Orazem, M. E. (2004). A systematic approach toward error structure identification for impedance spectroscopy. Journal of Electroanalytical Chemistry, 572(2), 317-327. doi:10.1016/j.jelechem.2003.11.059Orazem, M. E., Shukla, P., & Membrino, M. A. (2002). Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements. Electrochimica Acta, 47(13-14), 2027-2034. doi:10.1016/s0013-4686(02)00065-8Agarwal, P., Orazem, M. E., & Garcia-Rubio, L. H. (1996). The influence of error structure on interpretation of impedance spectra. Electrochimica Acta, 41(7-8), 1017-1022. doi:10.1016/0013-4686(95)00433-5Orazem, M. E. (1996). Application of Measurement Models to Electrohydrodynamic Impedance Spectroscopy. Journal of The Electrochemical Society, 143(3), 948. doi:10.1149/1.1836564Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4149. doi:10.1149/1.2048478Agarwal, P. (1992). Measurement Models for Electrochemical Impedance Spectroscopy. Journal of The Electrochemical Society, 139(7), 1917. doi:10.1149/1.2069522Orazem, M. E., Esteban, J. M., & Moghissi, O. C. (1991). Practical Applications of the Kramers-Kronig Relations. CORROSION, 47(4), 248-259. doi:10.5006/1.3585252Urquidi-Macdonald, M., Real, S., & Macdonald, D. D. (1990). Applications of Kramers—Kronig transforms in the analysis of electrochemical impedance data—III. Stability and linearity. Electrochimica Acta, 35(10), 1559-1566. doi:10.1016/0013-4686(90)80010-lHirschorn, B., & Orazem, M. E. (2009). On the Sensitivity of the Kramers–Kronig Relations to Nonlinear Effects in Impedance Measurements. Journal of The Electrochemical Society, 156(10), C345. doi:10.1149/1.3190160Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131Lai, W. (2010). Fourier analysis of complex impedance (amplitude and phase) in nonlinear systems: A case study of diodes. Electrochimica Acta, 55(19), 5511-5518. doi:10.1016/j.electacta.2010.04.016Montella C. Diard J. P. , Nonlinear Impedance of Tafelian Electrochemical Systems, Wolfram Demonstrations Project, 2014, http://demonstrations.wolfram. com/NonlinearImpedanceOfTafelianElectrochemicalSystems/.Montella, C. (2012). Combined effects of Tafel kinetics and Ohmic potential drop on the nonlinear responses of electrochemical systems to low-frequency sinusoidal perturbation of electrode potential – New approach using the Lambert W-function. Journal of Electroanalytical Chemistry, 672, 17-27. doi:10.1016/j.jelechem.2012.03.003Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Non-linear impedance for a two-step electrode reaction with an intermediate adsorbed species. Electrochimica Acta, 42(7), 1053-1072. doi:10.1016/s0013-4686(96)00206-xDiard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation from the polarization resistance due to non-linearity I - theoretical formulation. Journal of Electroanalytical Chemistry, 432(1-2), 27-39. doi:10.1016/s0022-0728(97)00213-1Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity II. Application to electrochemical reactions. Journal of Electroanalytical Chemistry, 432(1-2), 41-52. doi:10.1016/s0022-0728(97)00234-9Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity. III—Polarization resistance determination from non-linear impedance measurements. Journal of Electroanalytical Chemistry, 432(1-2), 53-62. doi:10.1016/s0022-0728(97)00233-7Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Impedance measurement errors due to non-linearities—I. Low frequency impedance measurements. Electrochimica Acta, 39(4), 539-546. doi:10.1016/0013-4686(94)80098-7Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Theoretical formulation of the odd harmonic test criterion for EIS measurements. Journal of Electroanalytical Chemistry, 377(1-2), 61-73. doi:10.1016/0022-0728(94)03624-1Smulko, J., & Darowicki, K. (2003). Nonlinearity of electrochemical noise caused by pitting corrosion. Journal of Electroanalytical Chemistry, 545, 59-63. doi:10.1016/s0022-0728(03)00106-2Darowicki, K. (1997). Linearization in impedance measurements. Electrochimica Acta, 42(12), 1781-1788. doi:10.1016/s0013-4686(96)00377-5Darowicki, K. (1995). The amplitude analysis of impedance spectra. Electrochimica Acta, 40(4), 439-445. doi:10.1016/0013-4686(94)00303-iDarowicki, K. (1995). Frequency dispersion of harmonic components of the current of an electrode process. Journal of Electroanalytical Chemistry, 394(1-2), 81-86. doi:10.1016/0022-0728(95)04065-vVan Gheem, E., Pintelon, R., Hubin, A., Schoukens, J., Verboven, P., Blajiev, O., & Vereecken, J. (2006). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 51(8-9), 1443-1452. doi:10.1016/j.electacta.2005.02.096Van Gheem, E., Pintelon, R., Vereecken, J., Schoukens, J., Hubin, A., Verboven, P., & Blajiev, O. (2004). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 49(26), 4753-4762. doi:10.1016/j.electacta.2004.05.039Pintelon, R., Louarroudi, E., & Lataire, J. (2015). Nonparametric time-variant frequency response function estimates using arbitrary excitations. Automatica, 51, 308-317. doi:10.1016/j.automatica.2014.10.088Pintelon, R., Louarroudi, E., & Lataire, J. (2013). Detecting and Quantifying the Nonlinear and Time-Variant Effects in FRF Measurements Using Periodic Excitations. IEEE Transactions on Instrumentation and Measurement, 62(12), 3361-3373. doi:10.1109/tim.2013.2267457Popkirov, G. S., & Schindler, R. N. (1995). Effect of sample nonlinearity on the performance of time domain electrochemical impedance spectroscopy. Electrochimica Acta, 40(15), 2511-2517. doi:10.1016/0013-4686(95)00075-pPopkirov, G. S., & Schindler, R. N. (1993). Optimization of the perturbation signal for electrochemical impedance spectroscopy in the time domain. Review of Scientific Instruments, 64(11), 3111-3115. doi:10.1063/1.1144316Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152On the definition of total harmonic distortion and its effect on measurement interpretation. (2005). IEEE Transactions on Power Delivery, 20(1), 526-528. doi:10.1109/tpwrd.2004.839744Mao, Q., & Krewer, U. (2013). Total harmonic distortion analysis of oxygen reduction reaction in proton exchange membrane fuel cells. Electrochimica Acta, 103, 188-198. doi:10.1016/j.electacta.2013.03.194Mao, Q., & Krewer, U. (2012). Sensing methanol concentration in direct methanol fuel cell with total harmonic distortion: Theory and application. Electrochimica Acta, 68, 60-68. doi:10.1016/j.electacta.2012.02.018Mao, Q., Krewer, U., & Hanke-Rauschenbach, R. (2010). Total harmonic distortion analysis for direct methanol fuel cell anode. Electrochemistry Communications, 12(11), 1517-1519. doi:10.1016/j.elecom.2010.08.022Thomas, S., Lee, S. C., Sahu, A. K., & Park, S. (2014). Online health monitoring of a fuel cell using total harmonic distortion analysis. International Journal of Hydrogen Energy, 39(9), 4558-4565. doi:10.1016/j.ijhydene.2013.12.180Garcia-AntĂłn J. Igual-Muñoz A. Guiñon J. L. PĂ©rez-Herranz V. Herraiz-Cardona I. Ortega E. M. , Horizontal cell for electro-optical analysis of electrochemical processes, ES patent P-2000002526, October 2000.Herraiz-Cardona I. , Desarrollo de nuevos materiales de electrodo para la obtenciĂłn de hidrĂłgeno a partir de la electrolisis alcalina del agua, PhD Tesis, Valencia, Universitat PolitĂšcnica de ValĂšncia (2012).Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2015). Optimization of the electrochemical impedance spectrosc

    Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell

    Full text link
    [EN] he internal resistance of a PEM fuel cell depends on the operation conditions and on the current delivered by the cell. This work's goal is to obtain a semiempirical model able to reproduce the effect of the operation current on the internal resistance of an individual cell of a commercial PEM fuel cell stack; and to perform a statistical analysis in order to study the effect of the operation temperature and the inlet humidities on the parameters of the model. First, the internal resistance of the individual fuel cell operating in different operation conditions was experimentally measured for different DC currents, using the high frequency intercept of the impedance spectra. Then, a semiempirical model based on Springer and co-workersÂż model was proposed. This model is able to successfully reproduce the experimental trends. Subsequently, the curves of resistance versus DC current obtained for different operation conditions were fitted to the semiempirical model, and an analysis of variance (ANOVA) was performed in order to determine which factors have a statistically significant effect on each model parameter. Finally, a response surface method was applied in order to obtain a regression model.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Valid grant (Ref:. ACIF-2013-268)Giner-Sanz, JJ.; Ortega Navarro, EM.; PĂ©rez-Herranz, V. (2018). Statistical analysis of the effect of temperature and inlet humidities on the parameters of a semiempirical model of the internal resistance of a polymer electrolyte membrane fuel cell. Journal of Power Sources. 381:84-93. https://doi.org/10.1016/j.jpowsour.2018.01.093S849338

    Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems

    Full text link
    Electrochemical Impedance Spectroscopy (EIS) is an electrochemical measurement technique that has been applied to a broad range of applications. Three conditions must be fulfilled in order to obtain valid EIS measurements: causality, linearity and stationarity. The non fulfilment of any of these conditions may lead to distorted and biased EIS spectra. Consequently, the verification of the four fundamental conditions is mandatory before accepting any results extracted from an EIS spectrum. In this work, a harmonic analysis based method for linearity assessment and noise quantification in EIS measurements is presented, and validated both from an experimental point of view and from a theoretical point of view, for Tafelian systems. It was shown that the presented method was able to quantitatively assess the nonlinearity of the system; and to quantify and characterize the noise. Moreover, the presented method is able to determine the threshold frequency of the system above which the system does not present significant nonlinear effects even for very large perturbation amplitudes.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).Giner-Sanz, JJ.; Ortega Navarro, EM.; PĂ©rez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta. 211:1076-1091. doi:10.1016/j.electacta.2016.06.133S1076109121

    Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell

    Full text link
    [EN] Open circuit losses encompass a set of phenomena that reduce PEM fuel cell (PEMFC) efficiency, especially at low current densities. Properly modelling these losses is crucial for obtaining PEMFC models that reproduce accurately the experimental behaviour of PEMFCs operating at low current densities. The open circuit losses can be disaggregated into three distinct contributions: mixed potential, hydrogen crossovers and internal short-circuits. The aim of this work is to obtain a model for the anodic and the cathodic pressure effects on the hydrogen crossovers and the internal short-circuits in a commercial PEMFC. In order to achieve this goal, the hydrogen crossovers and the internal short-circuit were measured experimentally on a commercial PEMFC by linear voltammetry. The measurements were performed at a given temperature and gas inlet humidification level, for different anodic and cathodic pressures.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).Giner-Sanz, JJ.; Ortega Navarro, EM.; PĂ©rez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy. 39(25):13206-13216. https://doi.org/10.1016/j.ijhydene.2014.06.157S1320613216392

    Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements

    Full text link
    [EN] The impedance concept is defined by Ohm's generalized law. Ohm's law requires the fulfilment of 3 conditions in order to be valid: causality, linearity and stability. In general, electrochemical systems are highly nonlinear systems; and therefore, in order to achieve linearity low amplitude perturbations have to be used during EIS measurements. However, small amplitude perturbations lead to low signal-to-noise ratios. Consequently, the quality of an EIS measurement is determined by a trade-off: the perturbation amplitude should be big enough in order to obtain a good signal-to-noise ratio; and at the same time, it should be small enough in order to avoid significant nonlinear effects. The optimum perturbation amplitude corresponds with the maximum perturbation amplitude that ensures a pseudo linear response of the system. In this work, a method for experimentally determining the optimum perturbation amplitude for performing EIS measurements of a given system is presented. The presented method is based on the harmonic analysis of the output signals; and in this work, it was applied to a highly nonlinear system: the cathodic electrode of an alkaline water electrolyser. The presented method allows optimising the perturbation amplitude in both, constant amplitude and frequency dependant amplitude strategies. (c) 2017 The Electrochemical Society. All rights reserved.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali+d grant (Ref: ACIF-2013-268).Giner-Sanz, JJ.; Ortega Navarro, EM.; PĂ©rez-Herranz, V. (2017). Harmonic Analysis Based Method for Perturbation Amplitude Optimization for EIS Measurements. Journal of The Electrochemical Society. 164(13):H918-H924. https://doi.org/10.1149/2.1451713jesSH918H92416413Macdonald, D. D. (2006). Reflections on the history of electrochemical impedance spectroscopy. Electrochimica Acta, 51(8-9), 1376-1388. doi:10.1016/j.electacta.2005.02.107Orazem M. E. Tribollet B. , Electrochemical Impedance Spectroscopy, John Wiley & Sons, New Jersey (2008).Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2015). Montecarlo based quantitative Kramers–Kronig test for PEMFC impedance spectrum validation. International Journal of Hydrogen Energy, 40(34), 11279-11293. doi:10.1016/j.ijhydene.2015.03.135Cascos, V., Aguadero, A., Harrington, G., FernĂĄndez-DĂ­az, M. T., & Alonso, J. A. (2017). Design of Sr0.7R0.3CoO3-ÎŽ(R = Tb and Er) Perovskites Performing as Cathode Materials in Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 164(10), F3019-F3027. doi:10.1149/2.0031710jesPang, S., Wang, W., Su, Y., Shen, X., Wang, Y., Xu, K., & Chen, C. (2017). Synergistic Effect of A-Site Cation Ordered-Disordered Perovskite as a Cathode Material for Intermediate Temperature Solid Oxide Fuel Cells. Journal of The Electrochemical Society, 164(7), F775-F780. doi:10.1149/2.0701707jesKiebach, R., Zielke, P., VeltzĂ©, S., Ovtar, S., Xu, Y., Simonsen, S. B., 
 KĂŒngas, R. (2017). On the Properties and Long-Term Stability of Infiltrated Lanthanum Cobalt Nickelates (LCN) in Solid Oxide Fuel Cell Cathodes. Journal of The Electrochemical Society, 164(7), F748-F758. doi:10.1149/2.0361707jesChen, J., Liu, Q., Wang, B., Li, F., Jiang, H., Liu, K., 
 Wang, D. (2017). Hierarchical Polyamide 6 (PA6) Nanofibrous Membrane with Desired Thickness as Separator for High-Performance Lithium-Ion Batteries. Journal of The Electrochemical Society, 164(7), A1526-A1533. doi:10.1149/2.0971707jesHwang, C., Lee, K., Um, H.-D., Lee, Y., Seo, K., & Song, H.-K. (2017). Conductive and Porous Silicon Nanowire Anodes for Lithium Ion Batteries. Journal of The Electrochemical Society, 164(7), A1564-A1568. doi:10.1149/2.1241707jesZhang, Y., Chen, F., Yang, D., Zha, W., Li, J., Shen, Q., 
 Zhang, L. (2017). High Capacity All-Solid-State Lithium Battery Using Cathodes with Three-Dimensional Li+Conductive Network. Journal of The Electrochemical Society, 164(7), A1695-A1702. doi:10.1149/2.1501707jesMalifarge, S., Delobel, B., & Delacourt, C. (2017). Determination of Tortuosity Using Impedance Spectra Analysis of Symmetric Cell. Journal of The Electrochemical Society, 164(11), E3329-E3334. doi:10.1149/2.0331711jesPaulraj, A. R., Kiros, Y., SkĂ„rman, B., & Vidarsson, H. (2017). Core/Shell Structure Nano-Iron/Iron Carbide Electrodes for Rechargeable Alkaline Iron Batteries. Journal of The Electrochemical Society, 164(7), A1665-A1672. doi:10.1149/2.1431707jesStein, M., Mistry, A., & Mukherjee, P. P. (2017). Mechanistic Understanding of the Role of Evaporation in Electrode Processing. Journal of The Electrochemical Society, 164(7), A1616-A1627. doi:10.1149/2.1271707jesMurbach, M. D., & Schwartz, D. T. (2017). Extending Newman’s Pseudo-Two-Dimensional Lithium-Ion Battery Impedance Simulation Approach to Include the Nonlinear Harmonic Response. Journal of The Electrochemical Society, 164(11), E3311-E3320. doi:10.1149/2.0301711jesGiner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2017). Experimental Quantification of the Effect of Nonlinearities on the EIS Spectra of the Cathodic Electrode of an Alkaline Electrolyzer. Fuel Cells, 17(3), 391-401. doi:10.1002/fuce.201600137Katić, J., MetikoĆĄ-Huković, M., Ć arić, I., & Petravić, M. (2017). Electronic Structure and Redox Behavior of Tin Sulfide Films Potentiostatically Formed on Tin. Journal of The Electrochemical Society, 164(7), C383-C389. doi:10.1149/2.0371707jesYang, J., Yang, Y., Balaskas, A., & Curioni, M. (2017). Development of a Chromium-Free Post-Anodizing Treatment Based on 2-Mercaptobenzothiazole for Corrosion Protection of AA2024T3. Journal of The Electrochemical Society, 164(7), C376-C382. doi:10.1149/2.1191707jesTakabatake, Y., Kitagawa, Y., Nakanishi, T., Hasegawa, Y., & Fushimi, K. (2017). Grain Dependency of a Passive Film Formed on Polycrystalline Iron in pH 8.4 Borate Solution. Journal of The Electrochemical Society, 164(7), C349-C355. doi:10.1149/2.1011707jesQi, J., Gao, L., Li, Y., Wang, Z., Thompson, G. E., & Skeldon, P. (2017). An Optimized Trivalent Chromium Conversion Coating Process for AA2024-T351 Alloy. Journal of The Electrochemical Society, 164(7), C390-C395. doi:10.1149/2.1371707jesZhang, Q., Kercher, A. K., Veith, G. M., Sarbada, V., Brady, A. B., Li, J., 
 Marschilok, A. C. (2017). Lithium Vanadium Oxide (Li1.1V3O8) Coated with Amorphous Lithium Phosphorous Oxynitride (LiPON): Role of Material Morphology and Interfacial Structure on Resulting Electrochemistry. Journal of The Electrochemical Society, 164(7), A1503-A1513. doi:10.1149/2.0881707jesMoya, A. A. (2016). Electrochemical Impedance of Ion-Exchange Membranes with Interfacial Charge Transfer Resistances. The Journal of Physical Chemistry C, 120(12), 6543-6552. doi:10.1021/acs.jpcc.5b12087GarcĂ­a-Osorio, D. A., Jaimes, R., Vazquez-Arenas, J., Lara, R. H., & Alvarez-Ramirez, J. (2017). The Kinetic Parameters of the Oxygen Evolution Reaction (OER) Calculated on Inactive Anodes via EIS Transfer Functions:‱OH Formation. Journal of The Electrochemical Society, 164(11), E3321-E3328. doi:10.1149/2.0321711jesWei, Q., Yan, X., Kang, Z., Zhang, Z., Cao, S., Liu, Y., & Zhang, Y. (2017). Carbon Quantum Dots Decorated C3N4/TiO2Heterostructure Nanorod Arrays for Enhanced Photoelectrochemical Performance. Journal of The Electrochemical Society, 164(7), H515-H520. doi:10.1149/2.1281707jesMachado, S., Calaça, G. N., da Silva, J. P., de Araujo, M. P., BoerĂ©, R. T., PessĂŽa, C. A., & Wohnrath, K. (2017). Electrochemical Characterization of a Carbon Ceramic Electrode Modified with a Ru(II) Arene Complex and Its Application as Voltammetric Sensor for Paracetamol. Journal of The Electrochemical Society, 164(6), B314-B320. doi:10.1149/2.0191707jesBalasubramanian, P., Thirumalraj, B., Chen, S.-M., & Barathi, P. (2017). Electrochemical Determination of Isoniazid Using Gallic Acid Supported Reduced Graphene Oxide. Journal of The Electrochemical Society, 164(7), H503-H508. doi:10.1149/2.1021707jesJiang, J. (2017). High Temperature Monolithic Biochar Supercapacitor Using Ionic Liquid Electrolyte. Journal of The Electrochemical Society, 164(8), H5043-H5048. doi:10.1149/2.0211708jesWang, K.-Y., Chiu, Y.-K., & Cheng, H.-C. (2017). Electrochemical Capacitors of Horizontally Aligned Carbon Nanotube Electrodes with Oxygen Plasma Treatment. Journal of The Electrochemical Society, 164(7), A1587-A1594. doi:10.1149/2.1251707jesChang, C., Yang, X., Xiang, S., Lin, X., Que, H., & Li, M. (2017). Nitrogen and Sulfur Co-Doped Glucose-Based Porous Carbon Materials with Excellent Electrochemical Performance for Supercapacitors. Journal of The Electrochemical Society, 164(7), A1601-A1607. doi:10.1149/2.1341707jesLasia A. , Electrochemical Impedance Spectrscopy and its applications, Springer, London (2014).Gray M. G. Goodman J. W. , Electrochemical Impedance Spectrscopy and its applications, Springer, New York (1995).Barsoukov E. Macdonald J. R. , Impedance Spectroscopy. Theory, experiment and applications, John Wiley & Sons, New Jersey (2005).Macdonald, D. D., Sikora, E., & Engelhardt, G. (1998). Characterizing electrochemical systems in the frequency domain. Electrochimica Acta, 43(1-2), 87-107. doi:10.1016/s0013-4686(97)00238-7Schönleber, M., Klotz, D., & Ivers-TiffĂ©e, E. (2014). A Method for Improving the Robustness of linear Kramers-Kronig Validity Tests. Electrochimica Acta, 131, 20-27. doi:10.1016/j.electacta.2014.01.034Garland, J. E., Pettit, C. M., & Roy, D. (2004). Analysis of experimental constraints and variables for time resolved detection of Fourier transform electrochemical impedance spectra. Electrochimica Acta, 49(16), 2623-2635. doi:10.1016/j.electacta.2003.12.051Orazem, M. E., & Tribollet, B. (2008). An integrated approach to electrochemical impedance spectroscopy. Electrochimica Acta, 53(25), 7360-7366. doi:10.1016/j.electacta.2007.10.075Urquidi-Macdonald, M., Real, S., & Macdonald, D. D. (1990). Applications of Kramers—Kronig transforms in the analysis of electrochemical impedance data—III. Stability and linearity. Electrochimica Acta, 35(10), 1559-1566. doi:10.1016/0013-4686(90)80010-lDarowicki, K. (1995). Frequency dispersion of harmonic components of the current of an electrode process. Journal of Electroanalytical Chemistry, 394(1-2), 81-86. doi:10.1016/0022-0728(95)04065-vDarowicki, K. (1995). The amplitude analysis of impedance spectra. Electrochimica Acta, 40(4), 439-445. doi:10.1016/0013-4686(94)00303-iDarowicki, K. (1997). Linearization in impedance measurements. Electrochimica Acta, 42(12), 1781-1788. doi:10.1016/s0013-4686(96)00377-5Smulko, J., & Darowicki, K. (2003). Nonlinearity of electrochemical noise caused by pitting corrosion. Journal of Electroanalytical Chemistry, 545, 59-63. doi:10.1016/s0022-0728(03)00106-2Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Impedance measurement errors due to non-linearities—I. Low frequency impedance measurements. Electrochimica Acta, 39(4), 539-546. doi:10.1016/0013-4686(94)80098-7Diard, J.-P., Le Gorrec, B., & Montella, C. (1994). Theoretical formulation of the odd harmonic test criterion for EIS measurements. Journal of Electroanalytical Chemistry, 377(1-2), 61-73. doi:10.1016/0022-0728(94)03624-1Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation from the polarization resistance due to non-linearity I - theoretical formulation. Journal of Electroanalytical Chemistry, 432(1-2), 27-39. doi:10.1016/s0022-0728(97)00213-1Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity II. Application to electrochemical reactions. Journal of Electroanalytical Chemistry, 432(1-2), 41-52. doi:10.1016/s0022-0728(97)00234-9Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Deviation of the polarization resistance due to non-linearity. III—Polarization resistance determination from non-linear impedance measurements. Journal of Electroanalytical Chemistry, 432(1-2), 53-62. doi:10.1016/s0022-0728(97)00233-7Diard, J.-P., Le Gorrec, B., & Montella, C. (1997). Non-linear impedance for a two-step electrode reaction with an intermediate adsorbed species. Electrochimica Acta, 42(7), 1053-1072. doi:10.1016/s0013-4686(96)00206-xVan Gheem, E., Pintelon, R., Vereecken, J., Schoukens, J., Hubin, A., Verboven, P., & Blajiev, O. (2004). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 49(26), 4753-4762. doi:10.1016/j.electacta.2004.05.039Van Gheem, E., Pintelon, R., Hubin, A., Schoukens, J., Verboven, P., Blajiev, O., & Vereecken, J. (2006). Electrochemical impedance spectroscopy in the presence of non-linear distortions and non-stationary behaviour. Electrochimica Acta, 51(8-9), 1443-1452. doi:10.1016/j.electacta.2005.02.096Popkirov, G. S., & Schindler, R. N. (1995). Effect of sample nonlinearity on the performance of time domain electrochemical impedance spectroscopy. Electrochimica Acta, 40(15), 2511-2517. doi:10.1016/0013-4686(95)00075-pKiel, M., Bohlen, O., & Sauer, D. U. (2008). Harmonic analysis for identification of nonlinearities in impedance spectroscopy. Electrochimica Acta, 53(25), 7367-7374. doi:10.1016/j.electacta.2008.01.089Lai, W. (2010). Fourier analysis of complex impedance (amplitude and phase) in nonlinear systems: A case study of diodes. Electrochimica Acta, 55(19), 5511-5518. doi:10.1016/j.electacta.2010.04.016Montella C. Diard J. P. , Nonlinear Impedance of Tafelian Electrochemical Systems, Wolfram Demonstrations Project, 2014, http://demonstrations.wolfram.com/NonlinearImpedanceOfTafelianElectrochemicalSystems/.Montella, C. (2012). Combined effects of Tafel kinetics and Ohmic potential drop on the nonlinear responses of electrochemical systems to low-frequency sinusoidal perturbation of electrode potential – New approach using the Lambert W-function. Journal of Electroanalytical Chemistry, 672, 17-27. doi:10.1016/j.jelechem.2012.03.003Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2015). Statistical Analysis of the Effect of the Temperature and Inlet Humidities on the Parameters of a PEMFC Model. Fuel Cells, 15(3), 479-493. doi:10.1002/fuce.201400163Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2014). Hydrogen crossover and internal short-circuit currents experimental characterization and modelling in a proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 39(25), 13206-13216. doi:10.1016/j.ijhydene.2014.06.157Kaisare, N. S., Ramani, V., Pushpavanam, K., & Ramanathan, S. (2011). An analysis of drifts and nonlinearities in electrochemical impedance spectra. Electrochimica Acta, 56(22), 7467-7475. doi:10.1016/j.electacta.2011.06.112Hirschorn, B., Tribollet, B., & Orazem, M. E. (2008). On Selection of the Perturbation Amplitude Required to Avoid Nonlinear Effects in Impedance Measurements. Israel Journal of Chemistry, 48(3-4), 133-142. doi:10.1560/ijc.48.3-4.133Victoria, S. N., & Ramanathan, S. (2011). Effect of potential drifts and ac amplitude on the electrochemical impedance spectra. Electrochimica Acta, 56(5), 2606-2615. doi:10.1016/j.electacta.2010.12.007Hernandez-Jaimes, C., Vazquez-Arenas, J., Vernon-Carter, J., & Alvarez-Ramirez, J. (2015). A nonlinear Cole–Cole model for large-amplitude electrochemical impedance spectroscopy. Chemical Engineering Science, 137, 1-8. doi:10.1016/j.ces.2015.06.015Yuan X. Z. , Electrochemical impedance spectroscopy in PEM fuel cells. Fundamentals and applications, Springer, London (2010).Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2016). Optimization of the Perturbation Amplitude for Impedance Measurements in a Commercial PEM Fuel Cell Using Total Harmonic Distortion. Fuel Cells, 16(4), 469-479. doi:10.1002/fuce.201500141Fasmin, F., & Srinivasan, R. (2015). Detection of nonlinearities in electrochemical impedance spectra by Kramers–Kronig Transforms. Journal of Solid State Electrochemistry, 19(6), 1833-1847. doi:10.1007/s10008-015-2824-9Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4159. doi:10.1149/1.2048479BOUKAMP, B., & ROSSMACDONALD, J. (1994). Alternatives to Kronig-Kramers transformation and testing, and estimation of distributions. Solid State Ionics, 74(1-2), 85-101. doi:10.1016/0167-2738(94)90440-5Boukamp, B. A. (1995). A Linear Kronig-Kramers Transform Test for Immittance Data Validation. Journal of The Electrochemical Society, 142(6), 1885. doi:10.1149/1.2044210Agarwal, P. (1992). Measurement Models for Electrochemical Impedance Spectroscopy. Journal of The Electrochemical Society, 139(7), 1917. doi:10.1149/1.2069522Agarwal, P. (1995). Application of Measurement Models to Impedance Spectroscopy. Journal of The Electrochemical Society, 142(12), 4149. doi:10.1149/1.2048478Agarwal, P., Orazem, M. E., & Garcia-Rubio, L. H. (1996). The influence of error structure on interpretation of impedance spectra. Electrochimica Acta, 41(7-8), 1017-1022. doi:10.1016/0013-4686(95)00433-5Orazem, M. E., Esteban, J. M., & Moghissi, O. C. (1991). Practical Applications of the Kramers-Kronig Relations. CORROSION, 47(4), 248-259. doi:10.5006/1.3585252Orazem, M. E. (1996). Application of Measurement Models to Electrohydrodynamic Impedance Spectroscopy. Journal of The Electrochemical Society, 143(3), 948. doi:10.1149/1.1836564Orazem, M. E., Shukla, P., & Membrino, M. A. (2002). Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements. Electrochimica Acta, 47(13-14), 2027-2034. doi:10.1016/s0013-4686(02)00065-8Orazem, M. E. (2004). A systematic approach toward error structure identification for impedance spectroscopy. Journal of Electroanalytical Chemistry, 572(2), 317-327. doi:10.1016/j.jelechem.2003.11.059Shukla, P. K., Orazem, M. E., & Crisalle, O. D. (2004). Validation of the measurement model concept for error structure identification. Electrochimica Acta, 49(17-18), 2881-2889. doi:10.1016/j.electacta.2004.01.047Hirschorn, B., & Orazem, M. E. (2009). On the Sensitivity of the Kramers–Kronig Relations to Nonlinear Effects in Impedance Measurements. Journal of The Electrochemical Society, 156(10), C345. doi:10.1149/1.3190160Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2016). Application of a Montecarlo based quantitative Kramers-Kronig test for linearity assessment of EIS measurements. Electrochimica Acta, 209, 254-268. doi:10.1016/j.electacta.2016.04.131Popkirov, G. S., & Schindler, R. N. (1993). Optimization of the perturbation signal for electrochemical impedance spectroscopy in the time domain. Review of Scientific Instruments, 64(11), 3111-3115. doi:10.1063/1.1144316Pintelon, R., Louarroudi, E., & Lataire, J. (2013). Detecting and Quantifying the Nonlinear and Time-Variant Effects in FRF Measurements Using Periodic Excitations. IEEE Transactions on Instrumentation and Measurement, 62(12), 3361-3373. doi:10.1109/tim.2013.2267457Pintelon, R., Louarroudi, E., & Lataire, J. (2015). Nonparametric time-variant frequency response function estimates using arbitrary excitations. Automatica, 51, 308-317. doi:10.1016/j.automatica.2014.10.088Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2015). Total harmonic distortion based method for linearity assessment in electrochemical systems in the context of EIS. Electrochimica Acta, 186, 598-612. doi:10.1016/j.electacta.2015.10.152Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2016). Harmonic analysis based method for linearity assessment and noise quantification in electrochemical impedance spectroscopy measurements: Theoretical formulation and experimental validation for Tafelian systems. Electrochimica Acta, 211, 1076-1091. doi:10.1016/j.electacta.2016.06.133Kay, S. M., & Marple, S. L. (1981). Spectrum analysis—A modern perspective. Proceedings of the IEEE, 69(11), 1380-1419. doi:10.1109/proc.1981.12184Yuan, X., Sun, J. C., Blanco, M., Wang, H., Zhang, J., & Wilkinson, D. P. (2006). AC impedance diagnosis of a 500W PEM fuel cell stack. Journal of Power Sources, 161(2), 920-928. doi:10.1016/j.jpowsour.2006.05.003Herraiz-Cardona, I., Ortega, E., VĂĄzquez-GĂłmez, L., & PĂ©rez-Herranz, V. (2011). Electrochemical characterization of a NiCo/Zn cathode for hydrogen generation. International Journal of Hydrogen Energy, 36(18), 11578-11587. doi:10.1016/j.ijhydene.2011.06.067Herraiz-Cardona, I., Ortega, E., & PĂ©rez-Herranz, V. (2011). Impedance study of hydrogen evolution on Ni/Zn and Ni–Co/Zn stainless steel based electrodeposits. Electrochimica Acta, 56(3), 1308-1315. doi:10.1016/j.electacta.2010.10.093Herraiz-Cardona, I., Ortega, E., AntĂłn, J. G., & PĂ©rez-Herranz, V. (2011). Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits. International Journal of Hydrogen Energy, 36(16), 9428-9438. doi:10.1016/j.ijhydene.2011.05.047Herraiz-Cardona I. , Desarrollo de nuevos materiales de electrodo para la obtenciĂłn de hidrĂłgeno a partir de la electrolisis alcalina del agua, PhD Tesis, Universitat PolitĂšcnica de ValĂšncia, Valencia, 2012.Garcia-AntĂłn J. Horizontal cell for electro-optical analysis of electrochemical processes, ES patent P-2000002526, October 2000.Giner-Sanz, J. J., Ortega, E. M., & PĂ©rez-Herranz, V. (2015). Optimization of the electrochemical impedance spectroscopy measurement parameters for PEM fuel cell spectrum determination. Electrochimica Acta, 174, 1290-1298. doi:10.1016/j.electacta.2015.06.10

    Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell

    Full text link
    [EN] Electrochemical impedance spectroscopy (EIS) has been widely used in the fuel cell field since it allows deconvolving the different physic-chemical processes that affect the fuel cell performance. Typically, EIS spectra are modelled using electric equivalent circuits. In this work, EIS spectra of an individual cell of a commercial PEM fuel cell stack were obtained experimentally. The goal was to obtain a mechanistic electric equivalent circuit in order to model the experimental EIS spectra. A mechanistic electric equivalent circuit is a semiempirical modelling technique which is based on obtaining an equivalent circuit that does not only correctly fit the experimental spectra, but which elements have a mechanistic physical meaning. In order to obtain the aforementioned electric equivalent circuit, 12 different models with defined physical meanings were proposed. These equivalent circuits were fitted to the obtained EIS spectra. A 2 step selection process was performed. In the first step, a group of 4 circuits were preselected out of the initial list of 12, based on general fitting indicators as the determination coefficient and the fitted parameter uncertainty. In the second step, one of the 4 preselected circuits was selected on account of the consistency of the fitted parameter values with the physical meaning of each parameter.The authors are very grateful to the Generalitat Valenciana for its economic support in form of Vali + d grant (Ref: ACIF-2013-268).Giner-Sanz, JJ.; Ortega Navarro, EM.; PĂ©rez-Herranz, V. (2018). Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell. Journal of Power Sources. 379:328-337. https://doi.org/10.1016/j.jpowsour.2018.01.066S32833737
    • 

    corecore