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Abstract 
 
Remote sensing (RS) with aerial robots is becoming more usual in every day time in  
Precision Agriculture (PA) practices, do to their advantages over conventional methods.  
Usually, available commercial platforms providing off-the-shelf waypoint navigation  
are adopted to perform visual surveys over crop fields, with the purpose to acquire  
specific image samples. The way in which a waypoint list is computed and dispatched  
to the aerial robot when mapping non empty agricultural workspaces has not been  
yet discussed. In this paper we propose an offline mission planner approach that  
computes an efficient coverage path subject to some constraints by decomposing the  
environment approximately into cells. Therefore, the aim of this work is contributing  
with a feasible waypoints-based tool to support PA practices. 
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Introduction 
 
Mini aerial robots equipped with inexpensive and lightweight sensors have turned into a  
suitable Remote Sensing (RS) platform, fulfilling the lacks left open by other RS tools,  
such as satellites on airplanes, providing an affordable, flexible and fast way for  
agricultural data acquisition and delivery. 
 
Aerial robots are mainly employed in agriculture for crop observation and map  
generation through imaging surveys [Johnson, 2003], [Herwitz, 2004], [Xiang, 2007].  
The maps are usually built by stitching a set of geo-referenced images (i.e. orthophotos)  
through mosaicking procedures. Hence typically maps information about the  
biophysical parameters of the crop field. 
 
Moreover, the agricultural experiments reported with aerial vehicles fall mainly in  
waypoints-based navigation [Johnson, 2003], [Zarco-Tejada, 2009], [Nebiker, 2008],  
where the aerial vehicles navigate autonomously through a trajectory predefined by a set  
of points in the environment. 
 
Therefore, the aerial vehicle usually has to cover the full area to scan following a  
continuous and smooth trajectory while avoiding areas or parcels that are not objectives.  
It is also desirable to minimize the number of changes in direction and revisiting the  
minimum number of points. Furthermore, since not all areas are suitable for takeoff or  
 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148661604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


landing with Aerial Robots, the trajectory must ensure starting and ending points in 
places that fulfill all the requirements (safety margins, space enough for operation, pick  
up and drop ability, accessibility). 
 
Coverage path planning (CPP) is a sub-field of motion planning, which indeed deals  
with techniques in order to determine the path that ensures a complete coverage (e.g.  
back and forth motions) for a robot in a free workspace. Since the robot has to fly over  
all points in the free workspace, the CPP problem is related to the covering salesman  
problem (CSP), a nondeterministic polynomial time hard problem [Choset, 2000].  
Coverage path planning with Unmanned Aerial vehicles (UAV) is discussed in [Jiao et 
al., 2010] and [Maza & Ollero, 2007], are proposed exact cell decomposition methods  
to break down a polygonal area. Although the cited authors use an exact cell  
decomposition their approaches address mainly area decomposition and coverage with  
back and forth motions.  
 
Herein we address the problem to cover an entirely farm site with a vertical takeoff and 
landing aerial robot, providing way-point navigation. Therefore an offline mission 
planner has been developed with the purpose to be used together with commercial off- 
the-shelf aerial robots. Our approach computes a coverage path restricted to the  
minimum number of turns and heading angles, avoidable cells, likewise predefined start 
and goal position.   
 
Motivation 
 
Our motivation in the development of an offline mission planner based on way-points,  
is to improve the fact that up to now, most of the UAVs employed in agricultural   
management tasks, are off-the-shelf platforms with an autopilot that enables the user to  
insert a list of way-points.  
 
The mission planner computes a coverage path given a target area and the a priori 
information therein. Therefore the user can use the mission planner to plan the path to 
cover with any type of aerial robot providing waypoint navigation, since the output is 
retrieved as a set of geographic coordinates. Therefore the feasible usage of the platform 
is maintained, odd from the focus and knowledge of its users. 
 
Mission planner 
 
The workspace is decomposed through an approximate cellular decomposition, 
following the taxonomy proposed by [Choset, 2000], which means that the workspace is 
sampled like a regular grid. This grid-based representation with optimal dispersion is 
reached by dividing the space into cubes, and placing a point in the center of each cube, 
therefore can be defined has a kind of Sukharev grid [LaValle, 2006]. In this type of 
decomposition is normally assumed that once the robot enters a cell it has covered  a 
cell, even by it footprint or end-effectors (see Figure 1). 



  
Figure 1 – Data acquisition in a grid-based decomposed environment. 

 
Herein we consider that the center of each cell is a way-point, and each cell is an image 
sample, the cell dimension can be obtained through the following relationship, 
 

(1) 
 
Where ����, h, ����, f,  stands respectively to cell dimension in meters, flying height,  
image dimension, focal length of the camera. Should be said that the aerial robot has to  
fly at a certain constant height in order to ensure a determinate grid resolution and the  
image sensor field-of-view (FOV) should be enough to cover a cell with a predefined  
dimension, Figure 2 shows the relation between the cell dimension and the aerial robot 
height from the ground.  

 
Figure 2 - Cell size example at several altitudes, considering a focal length of 50mm 

and a 135 film frame. 
 
 Another advantages of having a grid-based decomposition is that directly maps the  
robot workspace into a kind of unit distance graph, denoted as grid graph ��	,�� where  
V are the vertices and E the edges. Each vertex represents a way-point and each edge,  
the path between two way-points u and v such that u ~ v. 
 
To ensure an optimal coverage time, we have to compute a coverage path that does not  
pass by any points in the environment twice, and at the same time, performs this  
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trajectory with the minimum number of turns. Thus we need to calculate the path cost  
based on how many times the aerial robot has to change its direction, or even how many  
rotations have to be done. In order to compute the number of turns, we can consider two  
types of neighborhoods, the Von Neumann 4-points connectivity and Moore 8-nodes  
neighborhood. If we consider a Von Neumann neighborhood, the aerial robot angle of  
turn is limited to ±90, instead if we choose a Moore neighborhood the robot will be able  
to turn ±45, ±90, or ±135. 
 

 
Figure 3 - Schematic with the possible drifts performed by the Aerial robot. 

 
To find a complete coverage path that passes through all nodes in the adjacency graph  
just once, we apply a Deep-limited search (DLS) to built a tree with all possible  
coverage paths. By using this approach, we can limited the search length to the number  
of vertexes, and consequently, the search neither goes around in infinite cycles and  
nor visits a node twice. On the other hand, by using this blind-search procedure we will  
have an augmented number of solutions, and after computing all of them we still have  
to compute the number of turns for each one, which has a very high computational cost.  
For that motive we employ a heuristic-based approach based in a wave-front planner  
[LaValle, 2006]. The wave-front planner works by propagating a distance transform  
function from the goal cell through all free grid cells bypassing all obstacles (i.e. herein  
we assume that an obstacle is a cell, or even a set of cells that we not intend to visually  
cover).  
 
The distance transform function is applied over the grid by employing a Bread- 
first search (BFS) on the graph induced by the neighborhood adjacency of cells, hence  
the coverage path can be easily found from any starting point within the environment to  
the goal cell, by choosing the nearest neighbor cell in gradient ascendant order, instead  
as usually, in gradient descendant order. During the gradient tracking, the algorithm is  
going to find more than one neighbor to choose from, with the same potential weight.  
Additionally, the bottleneck caused by the local minimal can also block the search. To  
solve those issues, we employ a backtracking procedure that keeps in memory all  
unexpanded child nodes, which have the same potential weight that other child nodes,  
from the same parent node. Furthermore as seen before the aerial robot can perform  
three different angles of turn in the grid-based workspace, since the real cost (speaking  
in terms of time to perform such movement) is not the same for each turn, e.g., is clear 
that the time requested for a change in direction of 45º is less than the time requested for  
a change in direction of 135º. Therefore, instead of  just minimizing the number of  
 



turns, qualitatively, we minimize also the sum of the heading turns performed,  
quantitatively, by weighting each robot rotation via a weight Γ as follows, 
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The sum of the heading rotation weights can be written as, 
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where N stand for the number of turns made and k the rotated angle. Finally, our goal is 
to minimize .  
 
Application and results 
 
In order to show the feasibility and applicability of the proposed approach, let’s  
consider the othophoto taken from an agricultural field situated in the northwest of  
Madrid, Spain, with geographic coordinates 40º06´43.83´´N and 3º17´01.14´´W (see  
Figure 4). The blue line delimit the shape of the field and also the area of interest where  
we aim to acquire data. However, there are also some areas that we are not interested to  
sample, such like a couple of trees on the field, machinery, or even a parcel with a  
different cultivation. Those are represented by the red dashed line. Moreover, we must  
define the grid-based workspace boundaries, which is depicted in yellow. 
 

 
Figure 4 –Target agricultural field to remote sensing with an aerial robot. 

 
An user with access to a geographic information system (GIS), can easily obtain a  
priori  information from the agricultural field that he/she wish to sample, and  
consequently this information is used to define the grid resolution, and also set the  
mission planner. The yellow lines delimit an area of 63765 m² which correspond to 195  
m length and 327 m width. Let’s assume that the aerial robot carries a commercial  
digital camera that provides image resolutions up to 10.4 mega pixels. Moreover, we  
choose the best image resolution to sample the field, which correspond to an image size  



from 3368x3088 pixels. If we wish to have a spatial resolution from 1 pixel/cm, we will  
obtain a grid resolution from 6x10 cells, where each cell will have approximately 1063  
m². Considering the last workspace resolution to carry out our goal, the following  
environment decomposition is obtained (see Figure 5). Moreover, Table 1 resume the  
information obtained a priori from the workspace. 
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1 40.113506º -3.284718 º 

2 40.111889º -3.285633º 

3 40.112345º -3.281221º 

4 40.110729º -3.282138º 

S
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e Width 195 m 

Length 327 m 

Table 1- A priori information from the grid-based workspace. 
 

 
Figure 5 - Agricultural field decomposed approximately by cells with 32.7x32.5 m size. 
 
Since the visual sensor is carried by the aerial robot, we must assign at which altitude it  
has to fly to provide those resolutions. As previously stated Equation 1 can provide the  
relation between the cells dimension and the sensor distance, given the characteristics  
from the visual sensor. Let’s assume that the image dimension is 35mm and the focal  
length of the camera is from 50mm. In this way we obtain a horizontal and vertical field  
of view of 46.71 m and 46.42 m respectively. For that motive if we set the aerial robot  
altitude to 50 m it will be enough to map the area of each cell.  
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Figure 6 - Coverage path computed by the mission planner. 

 
After setting up the mission planner with the information obtained from the GIS system  
and defining the start and goal positions, we will obtain the planned path depicted in  
Figure 6. The planner retrieve a coverage path with 21 turns which start and finishes in  
the bottom right corner of the workspace. The overall heading rotation cost can be  
express as, 
 

 �  4 � ���° � 13 � ��° � 4 � ��° �  28 � �°  
 
The mission planner has been developed under Mathlab. The example shown was  
computed in a Intel(R) Core(TM) 2 Duo CPU at 2.26GHz. A single best solution  
was then obtained over 420931 possible solutions in approximately 200 minutes.  
 
Conclusions 
 
In this paper, a mission planner that computes a discrete coverage trajectory through  
waypoints, and also considers also regions of non interest to fly over is presented. The  
purpose of this approach is to provide with a visual coverage path of an agricultural  
field and employing aerial robots in a feasible fashion. In this way, this tool works out  
in three steps as shown in Figure 7: 1. Offline definition of the workspace and  
acquirement of datum from the GIS environment. 2. Insertion and computation of the  
coverage path based on the previous data. 3. Execution of the mission.      

 



 
Figure 7 – The three step mission setup. 

 
A drawback of our approach is the computation time imposed by the algorithm that  
looks up for the optimal path. However, since the mission planner works offline, this is  
not an issue during the execution of the experiments. In a future work, we will improve  
the algorithm to yield better computation time results. Furthermore, a multi-robot  
strategy will also be considered. A survey of a wide agricultural area with just one aerial  
robot might be an issue, since the current status of those small platforms still does not  
permit to perform long endurance missions. In this way, a fleet of aerial robots will play  
an important role in PA practices.     
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