1,362 research outputs found

    The Integration of Virtual Reality in the Commercial Construction Industry

    Get PDF
    Virtual reality has recently been spreading throughout the commercial construction industry rapidly. Some of its capabilities are safety training, helping spot Americans with Disabilities Act (ADA) issues, logistics planning, and virtual walkthroughs. Many construction companies were starting to utilize virtual reality\u27s advantages until COVID-19 hit. The initial wave of COVID slowed down construction in general as well as the need or use of virtual reality. Now, some companies are worried about the health risks and implementation issues that virtual reality headsets might bring while other companies are optimistic about the future of virtual reality. This report will explore the different advantages and disadvantages of implementing virtual reality into a commercial construction company. Interviews and surveys have been conducted to further the research on this matter. Ultimately, it was determined that VR is case and company specific. Not all commercial construction companies need VR; however, some benefit from it

    Optimum structure for a uniform load over multiple spans

    Get PDF
    This paper presents a new half-plane Michell structure that transmits a uniformly distributed load of infinite horizontal extent to a series of equally-spaced pinned supports. Full kinematic description of the structure is obtained for the case when the maximum allowable tensile stress is greater than or equal to the allowable compressive stress. Although formal proof of optimality of the solution presented is not yet available, the proposed analytical solution is supported by substantial numerical evidence, involving the solution of problems with in excess of 10 billion potential members. Furthermore, numerical solutions for various combinations of unequal allowable stresses suggest the existence of a family of related, simple, and practically relevant structures, which range in form from a Hemp-type arch with vertical hangers to a structure which strongly resembles a cable-stayed bridge

    A user-system interface agent

    Get PDF
    Agent-based technologies answer to several challenges posed by additional information processing requirements in today's computing environments. In particular, (1) users desire interaction with computing devices in a mode which is similar to that used between people, (2) the efficiency and successful completion of information processing tasks often require a high-level of expertise in complex and multiple domains, (3) information processing tasks often require handling of large volumes of data and, therefore, continuous and endless processing activities. The concept of an agent is an attempt to address these new challenges by introducing information processing environments in which (1) users can communicate with a system in a natural way, (2) an agent is a specialist and a self-learner and, therefore, it qualifies to be trusted to perform tasks independent of the human user, and (3) an agent is an entity that is continuously active performing tasks that are either delegated to it or self-imposed. The work described in this paper focuses on the development of an interface agent for users of a complex information processing environment (IPE). This activity is part of an on-going effort to build a model for developing agent-based information systems. Such systems will be highly applicable to environments which require a high degree of automation, such as, flight control operations and/or processing of large volumes of data in complex domains, such as the EOSDIS environment and other multidisciplinary, scientific data systems. The concept of an agent as an information processing entity is fully described with emphasis on characteristics of special interest to the User-System Interface Agent (USIA). Issues such as agent 'existence' and 'qualification' are discussed in this paper. Based on a definition of an agent and its main characteristics, we propose an architecture for the development of interface agents for users of an IPE that is agent-oriented and whose resources are likely to be distributed and heterogeneous in nature. The architecture of USIA is outlined in two main components: (1) the user interface which is concerned with issues as user dialog and interaction, user modeling, and adaptation to user profile, and (2) the system interface part which deals with identification of IPE capabilities, task understanding and feasibility assessment, and task delegation and coordination of assistant agents

    Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances

    Get PDF
    In recent years, two-dimensional (2D) semiconductor photocatalysts have been widely applied in water splitting, CO2 reduction, N2 fixation, as well as many other important photoreactions. Photocatalysts in the form of 2D nanosheet possess many inherent advantages over traditional 3D nanopowder photocatalysts, including improved light absorption characteristics, shorter electron and hole migration paths to the photocatalysts’ surface (thus minimizing undesirable electron-hole pair recombination), and abundant surface defects which allow band gap modulation and facilitate charge transfer from the semiconductor to adsorbates. When synergistically exploited and optimized, these advantages can impart 2D photocatalysts with remarkable activities relative to their 3D counterparts. Accordingly, a wide range of experimental approaches is now being explored for the synthesis of 2D photocatalysts, with computational methods increasingly being used for identification of promising new 2D photocatalytic materials. Herein, we critically review recent literatures related to 2D photocatalyst development and design. Particular emphasis is placed on 2D photocatalyst synthesis and the importance of computational studies for the fundamental understanding of 2D photocatalyst electronic structure, band gap structure, charge carrier mobility and reaction pathways. We also explore the practical challenges of using 2D photocatalysts, such as their difficulty to synthesize in large quantity and also their characterization. The overarching aim of this review is to provide a snapshot of recent work targeting high-performance 2D photocatalysts for efficient solar energy conversion, thus laying a firm base for future advancements in this rapidly expanding area of photocatalysis research

    “MUMI DANSA” (Merchandise Unik, Menarik dan Edukatif dengan Desain Peta)

    Full text link
    MUMI DANSA is one of the many alternatives of creative art that is able to give educative introduction about the culture of Nusantara. The goal of the project and the products is to have innovative point of view that could be given out into products design, the aim is also to provide fields of jobs, and educative points of view that could give knowledge and introduction about uniqueness of Nusantara. The project is done with 4 methods, which are promotion and publication, marketing, production, and methods for research and design development. The MUMI DANSA products which are t-shirts and accessories
    • …
    corecore