12 research outputs found

    Modelling the population size and dynamics of the British grey seal

    Get PDF
    Funding: part-funded by the UK Natural Environment Research Council to SMRU (Grant no. SMRU1001).1. Grey seals (Halichoerus grypus) were the first mammals to be protected by an Act of Parliament in the UK and are currently protected under UK, Scottish, and EU conservation legislation. Reporting requirements under each of these statutes requires accurate and timely population estimates. Monitoring is principally conducted by aerial surveys of the breeding colonies; these are used to produce estimates of annual pup production. Translating these data to estimates of adult population size requires information about demographic parameters such as fecundity and sex ratio. 2. An age‐structured population dynamics model is presented, which includes density dependence in pup survival, with separate carrying capacities in each of the four breeding regions considered (North Sea, Inner Hebrides, Outer Hebrides, and Orkney). This model is embedded within a Bayesian state–space modelling framework, allowing the population model to be linked to available data and the use of informative prior distributions on demographic parameters. A computer‐intensive fitting algorithm is presented based on particle filtering methods. 3. The model is fitted to region‐level pup production estimates from 1984 to 2010 and an independent estimate of adult population size, derived from aerial surveys of hauled‐out seals in 2008. The fitted model is used to estimate total population size from 1984 to 2010. 4. The population in the North Sea region has increased at a near‐constant rate; growth in the other three regions began to slow in the mid‐1990s and these populations appear to have reached carrying capacity. The total population size of seals aged 1 year or older in 2010 was estimated to be 116 100 (95% CI 98 400–138 600), an increase of <1% on the previous year. 5. The modelling and fitting methods are widely applicable to other wildlife populations where diverse sources of information are available and inference is required for the underlying population dynamics.PostprintPeer reviewe

    WinBUGS for population ecologists: Bayesian modeling using Markov Chain Monte Carlo methods.

    Get PDF
    This paper was presented at the EURING 2007 Technical Meeting, January 14-21, Dunedin, New Zealand. It has been submitted for publication in the conference proceedings, which will appear as a special issue of Environmental and Ecological Statistics.The zip file contains accompanying code in WinBUGSThe computer package WinBUGS is introduced. We first give a brief introduction to Bayesian theory and its implementation using Markov chain Monte Carlo (MCMC) algorithms. We then present three case studies showing how WinBUGS can be used when classical theory is difficult to implement. The first example uses data on white storks from Baden WĂŒrttemberg, Germany, to demonstrate the use of mark-recapture models to estimate survival, and also how to cope with unexplained variance through random effects. Recent advances in methodology and also the WinBUGS software allow us to introduce (i) a flexible way of incorporating covariates using spline smoothing and (ii) a method to deal with missing values in covariates. The second example shows how to estimate population density while accounting for detectability, using distance sampling methods applied to a test dataset collected on a known population of wooden stakes. Finally, the third case study involves the use of state-space models of wildlife population dynamics to make inferences about density dependence in a North American duck species. Reversible Jump MCMC is used to calculate the probability of various candidate models. For all examples, data and WinBUGS code are provided.Postprin

    Optimizing lifetime reproductive output: intermittent breeding as a tactic for females in a long-lived, multiparous mammal

    No full text
    In iteroparous species, intermittent breeding is an important life‐history tactic that can greatly affect animal population growth and viability. Despite its importance, few studies have quantified the consequences of breeding pauses on lifetime reproductive output, principally because calculating lifetime reproductive output requires knowledge of each individual's entire reproductive history. This information is extremely difficult to obtain in wild populations. We applied novel statistical approaches that account for uncertainty in state assessment and individual heterogeneity to an 18‐year capture–recapture dataset of 6,631 female southern elephant seals from Macquarie Island. We estimated survival and breeding probabilities, and investigated the consequences of intermittent breeding on lifetime reproductive output. We found consistent differences in females’ demographic performance between two heterogeneity classes. In particular, breeding imbued a high cost on survival in the females from the heterogeneity class 2, assumed to be females of lower quality. Individual quality also appeared to play a major role in a female's decision to skip reproduction with females of poorer quality more likely to skip breeding events than females of higher quality. Skipping some breeding events allowed females from both heterogeneity classes to increase lifetime reproductive output over females that bred annually. However, females of lower quality produced less offspring over their lifetime. Intermittent breeding seems to be used by female southern elephant seals as a tactic to offset reproductive costs on survival and enhance lifetime reproductive output but remains unavoidable and driven by individual‐specific constraints in some other females

    Long-term estimates of adult survival rates of urban Herring Gulls Larus argentatus

    No full text
    Urban gull populations have increased dramatically in the last 40 years, leading to widespread concerns about potential nuisance to humans, but little accompanying research into their ecology. This study aimed to provide the first long-term estimates of apparent adult survival rates for urban Herring Gulls Larus argentatus and Lesser Black-backed Gulls L. fuscus, based on colour ringing in Bristol, southwest England. Resightings of adult birds covering 18 years (1990–2007) were analysed using capture–mark–recapture methods, with candidate models testing for differences in survival and/or resighting rate through time and between the sexes. Both species showed high apparent annual survival rates (>0.90) in the early 1990s that declined to <0.70 by 2007. Male survival rates were higher than female rates in Lesser Black-backed Gulls, and male resighting rates were higher in both species. In the early 1990s, Bristol's urban gulls displayed similar adult survival rates to published estimates for rural colonies. Both species showed evidence of long-term declines in apparent survival, which may either reflect actual reductions in survival or increased permanent emigration from the Bristol colony. Anecdotal evidence supports the latter, linking emigration to urban redevelopment or human intervention
    corecore