35 research outputs found

    Correlation between magnetic and crystal structural sublattices in palladium-doped FeRh alloys: Analysis of the metamagnetic phase transition driving forces

    Get PDF
    FeRh alloys doped with the third element exhibit a change in the lattice and magnetic subsystems, which are manifested in antiferromagnetic- ferromagnetic (AFM-FM) first-order phase transition temperature, the shrinkage of the temperate hysteresis under transition, and the reduction of the saturation magnetization. All aforementioned parameters are crucial for practical applications. To control them it is quite important to determine the driving forces of the metamagnetic transition and its origins. In this manuscript ab initio calculations and experimental studies results are presented, which demonstrate the correlation between the structural and magnetic properties of the Fe50Rh50−xPdx alloys. The qualitative analysis of the metamagnetic phase transition driving forces in palladium-doped FeRh alloys was performed to determine their contribution to the evolution of magnetic and lattice subsystems. In addition, the impact of the impurities phases together with its magnetic behavior on the AFM-FM phase transition was considered.Fil: Komlev, Aleksei S.. Lomonosov Moscow State University; RusiaFil: Karpenkov, Dmitriy Y.. National University of Science and Technology; Rusia. Lomonosov Moscow State University; RusiaFil: Gimaev, Radel R.. Lomonosov Moscow State University; RusiaFil: Chirkova, Alisa. Institute for Materials Science; AlemaniaFil: Akiyama, Ayaka. Hirosaki University; JapónFil: Miyanaga, Takafumi. Hirosaki University; JapónFil: Hupalo, Marcio Ferreira. Universidade Estadual do Ponta Grossa; BrasilFil: Aguiar, D.J.M.. Universidade Federal do Paraná; BrasilFil: Carvalho, Alexandre Magnus G.. Universidade Estadual de Maringá; Brasil. Universidade Federal de Sao Paulo; BrasilFil: Jiménez, María Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Cabeza, Gabriela Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Zverev, Vladimir I.. Lomonosov Moscow State University; RusiaFil: Perov, Nikolai S.. Lomonosov Moscow State University; Rusi

    Influence of Structural Disorder on the Magnetic Order in FeRhCr Alloys

    Get PDF
    Magnetic phase transitions in alloys are highly influenced by the sample preparation techniques. In the present research, electronic and magnetic properties of Fe48Cr3Rh49 alloys with varying cooling rates were studied, both experimentally and theoretically. The degree of crystalline ordering was found to depend on the cooling rate employed after annealing the alloy. Modeling of alloy structures with different degrees of crystalline ordering was carried out via strategic selection of substitution positions and distances between chromium atoms. Theoretical calculations revealed significant changes in magnetic and electronic properties of the alloy with different substitutions. A comprehensive analysis of the calculated and experimental data established correlations between structural characteristics and parameters governing the magnetic phase transition. In this study, we also developed a method for evaluating the magnetic properties of the alloys obtained under different heat treatments. The proposed approach integrates atom substitution and heat treatment parameters, offering precise control over alloy manufacturing to effectively tune their essential magnetic properties

    Peculiarities of the Phase Transformation Dynamics in Bulk FeRh Based Alloys from Magnetic and Structural Measurements

    Get PDF
    We analyze coexistence of antiferromagnetic and ferromagnetic phases in bulk iron-rhodium and its alloys with palladium, Fe50,4Rh49,6, Fe49,7Rh47,4Pd2,9 and Fe48,3Rh46,8Pd4,9, using neutron diffraction, magnetization and scanning Hall probe imaging. Temperature dependencies of the lattice parameters, AFM and FM phase weight fractions, and Fe magnetic moment values were obtained on cooling and heating across the AFM-FM transition. Substantial thermomagnetic hysteresis for the phases’ weight fractions and a relatively narrow one for the unit cell volume has been observed on cooling-heating. A clear dependence of hysteretic behavior on Pd concentration has been traced. Additional direct magnetic measurements of the spatial distribution of the phase transition are acquired using scanning Hall probe microscopy, which reveals the length scale of the phase coexistence and the spatial progression of the transition in the presence of external magnetic field. Also, the magnetic phase diagram has been constructed for a series of Pd-doped FeRh alloys. © 2020 Elsevier B.V.EL acknowledges funding from the UK EPSRC. LFC acknowledges funding from the EPSRC and InnovateUK: Project number: 105541. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. This work was partly supported by the state assignment of the Ministry of Science and Higher Education (themes “Flux” No. AAAA-A18-118020190112-8 and “Alloys” № AAAA-A19-119070890020-3)

    The effect of cooling rate on magnetothermal properties of Fe49Rh51

    Get PDF
    We have investigated the effects of quenching rate on the thermal dependence of the magnetic entropy change ΔSM(T) and the magnetic field induced hysteresis loss through the antiferromagnetic (AFM) ↔ ferromagnetic (FM) transformation in bulk Fe49Rh51. Two nearly identical square-prism-shaped samples were subjected to two different temperature cooling regimes; one was rapidly quenched (FQ) in iced-water and another slow cooled (SC) to room temperature at a cooling rate of 2 K/min. The temperature of the AFM ↔ FM transition is similar for both samples, but the FQ sample shows much sharper temperature- and magnetic field-induced magnetization change; in addition, the total magnetization change is 14% larger. In FQ material, the magnetocaloric effect, i.e., ΔSM(T) quickly approaches saturation above 1 T and shows a large peak value at 2 T (13.9 versus 8.9 Jkg−1 K−1 in SC material), but a larger average hysteresis loss \u3cHL\u3eFWHM in the temperature range coinciding with of the full-width at half-maximum of the ΔSM(T) curve

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    Socio-Political Audit of Ideological Work in the Russian Federation

    No full text
    The article examines the ideological work as a technology for the state policy implementation. The purpose of the study is socio-political audit of modern ideological work. The socio-political audit is sociological analysis of the society’s development conditions in order to identify social risks and develop a systematic approach to their solution. Main prerequisites for ideological work and modeling include revival of political competition and multiparty system, pluralism of ideological and political views. The socio-political audit presupposes that there are principles, forms, and methods of ideological activity common to all political parties and public associations significant for each party in particular and the party system as a whole. The solution to the problem of the ideological work lies in the field of modeling and forecasting of socio-political processes and public administration systems. The problems of ideological work receive little attention from state, society, and research community

    Peculiarities of the magnetocaloric effect in FeRh-based alloys in the vicinity of the first order magnetic phase transition

    No full text
    Medical applications of magnetocaloric effect (MCE) require possibility for precision shift of a temperature of the magnetic phase transition at the same MCE value and minimize irreversibility. Thus, detail dynamic MCE investigation of such alloys with non-toxic biocompatible dopants need to be done. In present work, the giant magnetocaloric effect, which is observed in the whole family of Fe-Rh alloys, has been investigated in Pd-doped samples in slowly cycled magnetic fields of up to 1.8 T in magnitude for a range of temperatures, 250 K < T < 350 K. The shift of the ferromagnetic/antiferromagnetic transition temperature down towards room temperature and the decrease in the MCE have been observed in these alloys in comparison with a quasi-equiatomic FeRh alloy. The measurements have also shown an asymmetric behaviour of the first order magnetic phase transition with respect to whether the transition is traversed by heating from lower temperatures or cooling from above. These peculiarities have been explained in the framework of the ab-initio density functional theory-based disordered local moment theory of the MCE. The results have been compared with the those for the non-doped FeRh alloy. Thus features of the first order magnetic phase transition that these alloys have in common have been revealed which enable some predictions to be made appropriate for practical applications

    Peculiarities of the magnetocaloric effect in FeRh-based alloys in the vicinity of the first order magnetic phase transition

    No full text
    Medical applications of magnetocaloric effect (MCE) require possibility for precision shift of a temperature of the magnetic phase transition at the same MCE value and minimize irreversibility. Thus, detail dynamic MCE investigation of such alloys with non-toxic biocompatible dopants need to be done. In present work, the giant magnetocaloric effect, which is observed in the whole family of Fe-Rh alloys, has been investigated in Pd-doped samples in slowly cycled magnetic fields of up to 1.8 T in magnitude for a range of temperatures, 250 K < T < 350 K. The shift of the ferromagnetic/antiferromagnetic transition temperature down towards room temperature and the decrease in the MCE have been observed in these alloys in comparison with a quasi-equiatomic FeRh alloy. The measurements have also shown an asymmetric behaviour of the first order magnetic phase transition with respect to whether the transition is traversed by heating from lower temperatures or cooling from above. These peculiarities have been explained in the framework of the ab-initio density functional theory-based disordered local moment theory of the MCE. The results have been compared with the those for the non-doped FeRh alloy. Thus features of the first order magnetic phase transition that these alloys have in common have been revealed which enable some predictions to be made appropriate for practical applications
    corecore