438 research outputs found

    Isotropic and Anisotropic Regimes of the Field-Dependent Spin Dynamics in Sr2IrO4: Raman Scattering Studies

    Get PDF
    A major focus of experimental interest in Sr2IrO4 has been to clarify how the magnetic excitations of this strongly spin-orbit coupled system differ from the predictions of anisotropic 2D spin-1/2 Heisenberg model and to explore the extent to which strong spin-orbit coupling affects the magnetic properties of iridates. Here, we present a high-resolution inelastic light (Raman) scattering study of the low energy magnetic excitation spectrum of Sr2IrO4 and doped Eu-doped Sr2IrO4 as functions of both temperature and applied magnetic field. We show that the high-field (H>1.5 T) in-plane spin dynamics of Sr2IrO4 are isotropic and governed by the interplay between the applied field and the small in-plane ferromagnetic spin components induced by the Dzyaloshinskii-Moriya interaction. However, the spin dynamics of Sr2IrO4 at lower fields (H<1.5 T) exhibit important effects associated with interlayer coupling and in-plane anisotropy, including a spin-flop transition at Hc in Sr2IrO4 that occurs either discontinuously or via a continuous rotation of the spins, depending upon the in-plane orientation of the applied field. These results show that in-plane anisotropy and interlayer coupling effects play important roles in the low-field magnetic and dynamical properties of Sr2IrO4.Comment: 8 pages, 4 figures, submitte

    Simple and scalable growth of AgCl nanorods by plasma-assisted strain relaxation on flexible polymer substrates

    Get PDF
    Implementing nanostructures on plastic film is indispensable for highly efficient flexible optoelectronic devices. However, due to the thermal and chemical fragility of plastic, nanostructuring approaches are limited to indirect transfer with low throughput. Here, we fabricate single-crystal AgCl nanorods by using a Cl 2 plasma on Ag-coated polyimide. Cl radicals react with Ag to form AgCl nanorods. The AgCl is subjected to compressive strain at its interface with the Ag film because of the larger lattice constant of AgCl compared to Ag. To minimize strain energy, the AgCl nanorods grow in the [200] direction. The epitaxial relationship between AgCl (200) and Ag (111) induces a strain, which leads to a strain gradient at the periphery of AgCl nanorods. The gradient causes a strain-induced diffusion of Ag atoms to accelerate the nanorod growth. Nanorods grown for 45 s exhibit superior haze up to 100% and luminance of optical device increased by up to 33%. ? The Author(s) 2017.114Ysciescopu

    Structural contributions to the pressure-tuned charge-density-wave to superconductor transition in ZrTe3: Raman scattering studies

    Get PDF
    Superconductivity evolves as functions of pressure or doping from charge-ordered phases in a variety of strongly correlated systems, suggesting that there may be universal characteristics associated with the competition between superconductivity and charge order in these materials. We present an inelastic light (Raman) scattering study of the structural changes that precede the pressure-tuned charge-density-wave (CDW) to superconductor transition in one such system, ZrTe3. In certain phonon bands, we observe dramatic linewidth reductions that accompany CDW formation, indicating that these phonons couple strongly to the electronic degrees of freedom associated with the CDW. The same phonon bands, which represent internal vibrations of ZrTe3 prismatic chains, are suppressed at pressures above ~10 kbar, indicating a loss of long-range order within the chains, specifically amongst intrachain Zr-Te bonds. These results suggest a distinct structural mechanism for the observed pressure-induced suppression of CDW formation and provide insights into the origin of pressure-induced superconductivity in ZrTe3.Comment: 6 pages, 5 figure

    Isotropic and Anisotropic Regimes of the Field-Dependent Spin Dynamics in Sr\u3csub\u3e2\u3c/sub\u3eIrO\u3csub\u3e4\u3c/sub\u3e: Raman Scattering Studies

    Get PDF
    A major focus of experimental interest in Sr2IrO4 has been to clarify how the magnetic excitations of this strongly spin-orbit coupled system differ from the predictions of an isotropic 2D spin-1/2 Heisenberg model and to explore the extent to which strong spin-orbit coupling affects the magnetic properties of iridates. Here, we present a high-resolution inelastic light (Raman) scattering study of the low-energy magnetic excitation spectrum of Sr2IrO4 and Eu-doped Sr2IrO4 as functions of both temperature and applied magnetic field. We show that the high-field (H \u3e 1.5 T) in-plane spin dynamics of Sr2IrO4 are isotropic and governed by the interplay between the applied field and the small in-plane ferromagnetic spin components induced by the Dzyaloshinskii-Moriya interaction. However, the spin dynamics of Sr2IrO4 at lower fields (H \u3c 1.5 T) exhibit important effects associated with interlayer coupling and in-plane anisotropy, including a spin-flop transition at Hc in Sr2IrO4 that occurs either discontinuously or via a continuous rotation of the spins, depending on the in-plane orientation of the applied field. These results show that in-plane anisotropy and interlayer coupling effects play important roles in the low-field magnetic and dynamical properties of Sr2IrO4

    Synthetic phosphoethanolamine-modified oligosaccharides reveal the importance of glycan length and substitution in biofilm-inspired assemblies

    Get PDF
    Bacterial biofilm matrices are nanocomposites of proteins and polysaccharides with remarkable mechanical properties. Efforts understanding and tuning the protein component have been extensive, whereas the polysaccharide part remained mostly overlooked. The discovery of phosphoethanolamine (pEtN) modified cellulose in E. coli biofilms revealed that polysaccharide functionalization alters the biofilm properties. To date, the pattern of pEtN cellulose and its mode of interactions with proteins remains elusive. Herein, we report a model system based on synthetic epitomes to explore the role of pEtN in biofilm-inspired assemblies. Nine pEtN-modified oligosaccharides were synthesized with full control over the length, degree and pattern of pEtN substitution. The oligomers were co-assembled with a representative peptide, triggering the formation of fibers in a length dependent manner. We discovered that the pEtN pattern modulates the adhesion of biofilm-inspired matrices, while the peptide component controls its stiffness. Unnatural oligosaccharides tune or disrupt the assembly morphology, revealing interesting targets for polysaccharide engineering to develop tunable bio-inspired materials

    Discovering hidden biodiversity: the use of complementary monitoring of fish diet based on DNA barcoding in freshwater ecosystems

    Get PDF
    Ecological monitoring contributes to the understanding of complex ecosystem functions. The diets of fish reflect the surrounding environment and habitats and may, therefore, act as useful integrating indicators of environmental status. It is, however, often difficult to visually identify items in gut contents to species level due to digestion of soft-bodied prey beyond visual recognition, but new tools rendering this possible are now becoming available. We used a molecular approach to determine the species identities of consumed diet items of an introduced generalist feeder, brown trout (Salmo trutta), in 10 Tasmanian lakes and compared the results with those obtained from visual quantification of stomach contents. We obtained 44 unique taxa (OTUs) belonging to five phyla, including seven classes, using the barcode of life approach from cytochrome oxidase I (COI). Compared with visual quantification, DNA analysis showed greater accuracy, yielding a 1.4-fold higher number of OTUs. Rarefaction curve analysis showed saturation of visually inspected taxa, while the curves from the DNA barcode did not saturate. The OTUs with the highest proportions of haplotypes were the families of terrestrial insects Formicidae, Chrysomelidae, and Torbidae and the freshwater Chironomidae. Haplotype occurrence per lake was negatively correlated with lake depth and transparency. Nearly all haplotypes were only found in one fish gut from a single lake. Our results indicate that DNA barcoding of fish diets is a useful and complementary method for discovering hidden biodiversity. In this paper sequence-based DNA barcoding was applied to determine the diet of a generalist predator (brown trout, Salmo trutta) based on gut analyses. Subsequently, the results were compared with data derived from visual inspection. Based on our results, we discuss the potential of using prey organisms in fish gut contents as a supplementary monitoring tool to reveal hidden biodiversity

    State/Operator Correspondence in Higher-Spin dS/CFT

    Full text link
    A recently conjectured microscopic realization of the dS4_4/CFT3_3 correspondence relating Vasiliev's higher-spin gravity on dS4_4 to a Euclidean Sp(N)Sp(N) CFT3_3 is used to illuminate some previously inaccessible aspects of the dS/CFT dictionary. In particular it is argued that states of the boundary CFT3_3 on S2S^2 are holographically dual to bulk states on geodesically complete, spacelike R3R^3 slices which terminate on an S2S^2 at future infinity. The dictionary is described in detail for the case of free scalar excitations. The ground states of the free or critical Sp(N)Sp(N) model are dual to dS-invariant plane-wave type vacua, while the bulk Euclidean vacuum is dual to a certain mixed state in the CFT3_3. CFT3_3 states created by operator insertions are found to be dual to (anti) quasinormal modes in the bulk. A norm is defined on the R3R^3 bulk Hilbert space and shown for the scalar case to be equivalent to both the Zamolodchikov and pseudounitary C-norm of the Sp(N)Sp(N) CFT3_3.Comment: 24 page
    corecore