A major focus of experimental interest in Sr2IrO4 has been to clarify how the
magnetic excitations of this strongly spin-orbit coupled system differ from the
predictions of anisotropic 2D spin-1/2 Heisenberg model and to explore the
extent to which strong spin-orbit coupling affects the magnetic properties of
iridates. Here, we present a high-resolution inelastic light (Raman) scattering
study of the low energy magnetic excitation spectrum of Sr2IrO4 and doped
Eu-doped Sr2IrO4 as functions of both temperature and applied magnetic field.
We show that the high-field (H>1.5 T) in-plane spin dynamics of Sr2IrO4 are
isotropic and governed by the interplay between the applied field and the small
in-plane ferromagnetic spin components induced by the Dzyaloshinskii-Moriya
interaction. However, the spin dynamics of Sr2IrO4 at lower fields (H<1.5 T)
exhibit important effects associated with interlayer coupling and in-plane
anisotropy, including a spin-flop transition at Hc in Sr2IrO4 that occurs
either discontinuously or via a continuous rotation of the spins, depending
upon the in-plane orientation of the applied field. These results show that
in-plane anisotropy and interlayer coupling effects play important roles in the
low-field magnetic and dynamical properties of Sr2IrO4.Comment: 8 pages, 4 figures, submitte