6,627 research outputs found

    Peeling Bifurcations of Toroidal Chaotic Attractors

    Get PDF
    Chaotic attractors with toroidal topology (van der Pol attractor) have counterparts with symmetry that exhibit unfamiliar phenomena. We investigate double covers of toroidal attractors, discuss changes in their morphology under correlated peeling bifurcations, describe their topological structures and the changes undergone as a symmetry axis crosses the original attractor, and indicate how the symbol name of a trajectory in the original lifts to one in the cover. Covering orbits are described using a powerful synthesis of kneading theory with refinements of the circle map. These methods are applied to a simple version of the van der Pol oscillator.Comment: 7 pages, 14 figures, accepted to Physical Review

    SAR processing on the MPP

    Get PDF
    The processing of synthetic aperture radar (SAR) signals using the massively parallel processor (MPP) is discussed. The fast Fourier transform convolution procedures employed in the algorithms are described. The MPP architecture comprises an array unit (ARU) which processes arrays of data; an array control unit which controls the operation of the ARU and performs scalar arithmetic; a program and data management unit which controls the flow of data; and a unique staging memory (SM) which buffers and permutes data. The ARU contains a 128 by 128 array of bit-serial processing elements (PE). Two-by-four surarrays of PE's are packaged in a custom VLSI HCMOS chip. The staging memory is a large multidimensional-access memory which buffers and permutes data flowing with the system. Efficient SAR processing is achieved via ARU communication paths and SM data manipulation. Real time processing capability can be realized via a multiple ARU, multiple SM configuration

    Excretion of BHC in milk from dairy cows fed known amounts of BHC

    Get PDF

    General approach to potentials with two known levels

    Full text link
    We present the general form of potentials with two given energy levels E1E_{1}, E2E_{2} and find corresponding wave functions. These entities are expressed in terms of one function ξ(x)\xi (x) and one parameter ΔE=E2\Delta E=E_{2}-E1E_{1}. We show how the quantum numbers of both levels depend on properties of the function ξ(x)\xi (x). Our approach does not need resorting to the technique of supersymmetric (SUSY) quantum mechanics but automatically generates both the potential and superpotential.Comment: 14 pages, REVTeX 3.0. In v.2 misprints and inaccuracies in presentation corrected, discussion of 3-dim. case added. In v.3 misprint in eq. 41, several typos and inaccuracies in English corrected. To be published in J. of Phys. A: Math. Ge

    I Love A Little Cottage

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/5086/thumbnail.jp

    Measurement of the 214Bi spectrum in the energy region around the Q-value of 76Ge neutrinoless double-beta decay

    Full text link
    In this work we present the results obtained measuring the 214Bi spectrum from a 226Ra source with a high purity germanium detector. Our attention was mostly focused on the energy region around the Q-value of 76Ge neutrinoless double-beta decay (2039.006 keV). The results of this measurement are strongly related to the first indication for the neutrinoless double beta decay of 76Ge, given by a recent analysis \cite{Evidence,KK02-PN,KK02-Found,KK-BigArt02} of the data collected during ten years of measurements from the HEIDELBERG-MOSCOW experiment.Comment: 10 pages, latex2e, 5 figures, see also Home Page of HEIDELBERG Non-Accelerator Particle Physics Group: http://www.mpi-hd.mpg.de/non_acc

    Generalized coherent states are unique Bell states of quantum systems with Lie group symmetries

    Full text link
    We consider quantum systems, whose dynamical symmetry groups are semisimple Lie groups, which can be split or decay into two subsystems of the same symmetry. We prove that the only states of such a system that factorize upon splitting are the generalized coherent states. Since Bell's inequality is never violated by the direct product state, when the system prepared in the generalized coherent state is split, no quantum correlations are created. Therefore, the generalized coherent states are the unique Bell states, i.e., the pure quantum states preserving the fundamental classical property of satisfying Bell's inequality upon splitting.Comment: 4 pages, REVTeX, amssymb style. More information on http://www.technion.ac.il/~brif/science.htm
    • …
    corecore