10 research outputs found
Lysine Biosynthesis in Bacteria: A Metallodesuccinylase as a Potential Antimicrobial Target
In this review, we summarize the recent literature on dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) enzymes, with an emphasis on structure–function studies that provide insight into the catalytic mechanism. Crystallographic data have also provided insight into residues that might be involved in substrate and hence inhibitor recognition and binding. These data have led to the design and synthesis of several new DapE inhibitors, which are described along with what is known about how inhibitors interact with the active site of DapE enzymes, including the efficacy of a moderately strong DapE inhibitor
Inhibitors of \u3cem\u3eN\u3csup\u3eα\u3c/sup\u3e\u3c/em\u3e-acetyl-l-ornithine Deacetylase: Synthesis, Characterization and Analysis of their Inhibitory Potency
A series of N α-acyl (alkyl)- and N α-alkoxycarbonyl-derivatives of l- and d-ornithine were prepared, characterized, and analyzed for their potency toward the bacterial enzyme N α-acetyl-l-ornithine deacetylase (ArgE). ArgE catalyzes the conversion of N α-acetyl-l-ornithine to l-ornithine in the fifth step of the biosynthetic pathway for arginine, a necessary step for bacterial growth. Most of the compounds tested provided IC50 values in the μM range toward ArgE, indicating that they are moderately strong inhibitors. N α-chloroacetyl-l-ornithine (1g) was the best inhibitor tested toward ArgE providing an IC50 value of 85 μM while N α-trifluoroacetyl-l-ornithine (1f), N α-ethoxycarbonyl-l-ornithine (2b), and N α-acetyl-d-ornithine (1a) weakly inhibited ArgE activity providing IC50 values between 200 and 410 μM. Weak inhibitory potency toward Bacillus subtilis-168 for N α-acetyl-d-ornithine (1a) and N α-fluoro- (1f), N α-chloro- (1g), N α-dichloro- (1h), and N α-trichloroacetyl-ornithine (1i) was also observed. These data correlate well with the IC50 values determined for ArgE, suggesting that these compounds might be capable of getting across the cell membrane and that ArgE is likely the bacterial enzymatic target
Mono-\u3cem\u3eN\u3c/em\u3e-acyl-2,6-diaminopimelic Acid Derivatives: Analysis by Electromigration and Spectroscopic Methods and Examination of Enzyme Inhibitory Activity
Thirteen mono-N-acyl derivatives of 2,6-diaminopimelic acid (DAP)—new potential inhibitors of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE; EC 3.5.1.18)—were analyzed and characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopies and two capillary electromigration methods: capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC). Structural features of DAP derivatives were characterized by IR and NMR spectroscopies, whereas CZE and MEKC were applied to evaluate their purity and to investigate their electromigration properties. Effective electrophoretic mobilities of these compounds were determined by CZE in acidic and alkaline background electrolytes (BGEs) and by MEKC in acidic and alkaline BGEs containing a pseudostationary phase of anionic detergent sodium dodecyl sulfate (SDS) or cationic detergent cetyltrimethylammonium bromide (CTAB). The best separation of DAP derivatives, including diastereomers of some of them, was achieved by MEKC in an acidic BGE (500 mM acetic acid [pH 2.54] and 60 mM SDS). All DAP derivatives were examined for their ability to inhibit catalytic activity of DapE from Haemophilus influenzae (HiDapE) and ArgE from Escherichia coli (EcArgE). None of these DAP derivatives worked as an effective inhibitor of HiDapE, but one derivative—N-fumaryl, Me-ester-DAP—was found to be a moderate inhibitor of EcArgE, thereby providing a promising lead structure for further studies on ArgE inhibitors
Inhibition of the \u3cem\u3edapE\u3c/em\u3e-Encoded \u3cem\u3eN\u3c/em\u3e-Succinyl- Ęź, Ęź-diaminopimelic Acid Desuccinylase from \u3cem\u3eNeisseria meningitidis\u3c/em\u3e by Ęź-Captopril
Binding of the competitive inhibitor ʟ-captopril to the dapE-encoded N-succinyl-ʟ, ʟ-diaminopimelic acid desuccinylase from Neisseria meningitidis (NmDapE) was examined by kinetic, spectroscopic, and crystallographic methods. ʟ-Captopril, an angiotensin-converting enzyme (ACE) inhibitor, was previously shown to be a potent inhibitor of the DapE from Haemophilus influenzae (HiDapE) with an IC50 of 3.3 μM and a measured Ki of 1.8 μM and displayed a dose-responsive antibiotic activity toward Escherichia coli. ʟ-Captopril is also a competitive inhibitor of NmDapE with a Ki of 2.8 μM. To examine the nature of the interaction of ʟ-captopril with the dinuclear active site of DapE, we have obtained electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) data for the enzymatically hyperactive Co(II)-substituted forms of both HiDapE and NmDapE. EPR and MCD data indicate that the two Co(II) ions in DapE are antiferromagnetically coupled, yielding an S = 0 ground state, and suggest a thiolate bridge between the two metal ions. Verification of a thiolate-bridged dinuclear complex was obtained by determining the three-dimensional X-ray crystal structure of NmDapE in complex with ʟ-captopril at 1.8 Å resolution. Combination of these data provides new insights into binding of ʟ-captopril to the active site of DapE enzymes as well as important inhibitor–active site residue interaction’s. Such information is critical for the design of new, potent inhibitors of DapE enzymes
Identification of a Histidine Metal Ligand in the argE-Encoded N-Acetyl-L-Ornithine Deacetylase from Escherichia coli
The H355A, H355K, H80A, and H80K mutant enzymes of the argE-encoded N-acetyl-L-ornithine deacetylase (ArgE) from Escherichia coli were prepared, however, only the H355A enzyme was found to be soluble. Kinetic analysis of the Co(II)-loaded H355A exhibited activity levels that were 380-fold less than Co(II)-loaded WT ArgE. Electronic absorption spectra of Co(II)-loaded H355A-ArgE indicate that the bound Co(II) ion resides in a distorted, five-coordinate environment and Isothermal Titration Calorimetry (ITC) data for Zn(II) binding to the H355A enzyme provided a dissociation constant (Kd) of 39 ÎĽM. A three-dimensional homology model of ArgE was generated using the X-ray crystal structure of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae confirming the assignment of H355 as well as H80 as active site ligands
Inhibition of the <i>dapE</i>-Encoded <i>N</i>‑Succinyl‑l,l‑diaminopimelic Acid Desuccinylase from <i>Neisseria meningitidis</i> by l‑Captopril
Binding of the competitive inhibitor l-captopril to the <i>dapE</i>-encoded <i>N</i>-succinyl-l,l-diaminopimelic acid desuccinylase
from <i>Neisseria meningitidis</i> (<i>Nm</i>DapE)
was examined by kinetic, spectroscopic,
and crystallographic methods. l-Captopril, an angiotensin-converting
enzyme (ACE) inhibitor, was previously shown to be a potent inhibitor
of the DapE from <i>Haemophilus influenzae</i> (<i>Hi</i>DapE) with an IC<sub>50</sub> of 3.3 ÎĽM and a measured <i>K</i><sub>i</sub> of 1.8 ÎĽM and displayed a dose-responsive
antibiotic activity toward <i>Escherichia coli</i>. l-Captopril is also a competitive inhibitor of <i>Nm</i>DapE with a <i>K</i><sub>i</sub> of 2.8 ÎĽM. To examine
the nature of the interaction of l-captopril with the dinuclear
active site of DapE, we have obtained electron paramagnetic resonance
(EPR) and magnetic circular dichroism (MCD) data for the enzymatically
hyperactive CoÂ(II)-substituted forms of both <i>Hi</i>DapE
and <i>Nm</i>DapE. EPR and MCD data indicate that the two
CoÂ(II) ions in DapE are antiferromagnetically coupled, yielding an <i>S</i> = 0 ground state, and suggest a thiolate bridge between
the two metal ions. Verification of a thiolate-bridged dinuclear complex
was obtained by determining the three-dimensional X-ray crystal structure
of <i>Nm</i>DapE in complex with l-captopril at
1.8 Ă… resolution. Combination of these data provides new insights
into binding of l-captopril to the active site of DapE enzymes
as well as important inhibitor–active site residue interaction’s.
Such information is critical for the design of new, potent inhibitors
of DapE enzymes