78 research outputs found

    Rural health centres, communities and malaria case detection in Zambia using mobile telephones: a means to detect potential reservoirs of infection in unstable transmission conditions.

    Get PDF
    BACKGROUND: Effective malaria control depends on timely acquisition of information on new cases, their location and their frequency so as to deploy supplies, plan interventions or focus attention on specific locations appropriately to intervene and prevent an upsurge in transmission. The process is known as active case detection, but because the information is time sensitive, it is difficult to carry out. In Zambia, the rural health services are operating effectively and for the most part are provided with adequate supplies of rapid diagnostic tests (RDT) as well as effective drugs for the diagnosis and treatment of malaria. The tests are administered to all prior to treatment and appropriate records are kept. Data are obtained in a timely manner and distribution of this information is important for the effective management of malaria control operations. The work reported here involves combining the process of positive diagnoses in rural health centres (passive case detection) to help detect potential outbreaks of malaria and target interventions to foci where parasite reservoirs are likely to occur. METHODS: Twelve rural health centres in the Choma and Namwala Districts were recruited to send weekly information of rapid malaria tests used and number of positive diagnoses to the Malaria Institute at Macha using mobile telephone SMS. Data were entered in excel, expressed as number of cases per rural health centre and distributed weekly to interested parties. RESULTS: These data from each of the health centres which were mapped using geographical positioning system (GPS) coordinates were used in a time sensitive manner to plot the patterns of malaria case detection in the vicinity of each location. The data were passed on to the appropriate authorities. The seasonal pattern of malaria transmission associated with local ecological conditions can be seen in the distribution of cases diagnosed. CONCLUSIONS: Adequate supplies of RDT are essential in health centres and the system can be expanded throughout the country to support strategic targeting of interventions by the National Malaria Control Programme. Participation by the health centre staff was excellent

    Malaria Hotspots: Is There Epidemiological Evidence for Fine-Scale Spatial Targeting of Interventions?

    Get PDF
    As data at progressively granular spatial scales become available, the temptation is to target interventions to areas with higher malaria transmission - so-called hotspots - with the aim of reducing transmission in the wider community. This paper reviews literature to determine if hotspots are an intrinsic feature of malaria epidemiology and whether current evidence supports hotspot-targeted interventions. Hotspots are a consistent feature of malaria transmission at all endemicities. The smallest spatial unit capable of supporting transmission is the household, where peri-domestic transmission occurs. Whilst the value of focusing interventions to high-burden areas is evident, there is currently limited evidence that local-scale hotspots fuel transmission. As boundaries are often uncertain, there is no conclusive evidence that hotspot-targeted interventions accelerate malaria elimination

    Current Mathematical Models for Analyzing Anti-Malarial Antibody Data with an Eye to Malaria Elimination and Eradication.

    Get PDF
    The last decade has witnessed a steady reduction of the malaria burden worldwide. With various countries targeting disease elimination in the near future, the popular parasite infection or entomological inoculation rates are becoming less and less informative of the underlying malaria burden due to a reduced number of infected individuals or mosquitoes at the time of sampling. To overcome such problem, alternative measures based on antibodies against specific malaria antigens have gained recent interest in malaria epidemiology due to the possibility of estimating past disease exposure in absence of infected individuals. This paper aims then to review current mathematical models and corresponding statistical approaches used in antibody data analysis. The application of these models is illustrated with three data sets from Equatorial Guinea, Brazilian Amazonia region, and western Kenyan highlands. A brief discussion is also carried out on the future challenges of using these models in the context of malaria elimination

    Quantifying Plasmodium falciparum infections clustering within households to inform household-based intervention strategies for malaria control programs: An observational study and meta-analysis from 41 malaria-endemic countries.

    Get PDF
    BACKGROUND: Reactive malaria strategies are predicated on the assumption that individuals infected with malaria are clustered within households or neighbourhoods. Despite the widespread programmatic implementation of reactive strategies, little empirical evidence exists as to whether such strategies are appropriate and, if so, how they should be most effectively implemented. METHODS AND FINDINGS: We collated 2 different datasets to assess clustering of malaria infections within households: (i) demographic health survey (DHS) data, integrating household information and patent malaria infection, recent fever, and recent treatment status in children; and (ii) data from cross-sectional and reactive detection studies containing information on the household and malaria infection status (patent and subpatent) of all-aged individuals. Both datasets were used to assess the odds of infections clustering within index households, where index households were defined based on whether they contained infections detectable through one of 3 programmatic strategies: (a) Reactive Case Detection (RACD) classifed by confirmed clinical cases, (b) Mass Screen and Treat (MSAT) classifed by febrile, symptomatic infections, and (c) Mass Test and Treat (MTAT) classifed by infections detectable using routine diagnostics. Data included 59,050 infections in 208,140 children under 7 years old (median age = 2 years, minimum = 2, maximum = 7) by microscopy/rapid diagnostic test (RDT) from 57 DHSs conducted between November 2006 and December 2018 from 23 African countries. Data representing 11,349 infections across all ages (median age = 22 years, minimum = 0.5, maximum = 100) detected by molecular tools in 132,590 individuals in 43 studies published between April 2006 and May 2019 in 20 African, American, Asian, and Middle Eastern countries were obtained from the published literature. Extensive clustering was observed-overall, there was a 20.40 greater (95% credible interval [CrI] 0.35-20.45; P < 0.001) odds of patent infections (according to the DHS data) and 5.13 greater odds (95% CI 3.85-6.84; P < 0.001) of molecularly detected infections (from the published literature) detected within households in which a programmatically detectable infection resides. The strongest degree of clustering identified by polymerase chain reaction (PCR)/ loop mediated isothermal amplification (LAMP) was observed using the MTAT strategy (odds ratio [OR] = 6.79, 95% CI 4.42-10.43) but was not significantly different when compared to MSAT (OR = 5.2, 95% CI 3.22-8.37; P-difference = 0.883) and RACD (OR = 4.08, 95% CI 2.55-6.53; P-difference = 0.29). Across both datasets, clustering became more prominent when transmission was low. However, limitations to our analysis include not accounting for any malaria control interventions in place, malaria seasonality, or the likely heterogeneity of transmission within study sites. Clustering may thus have been underestimated. CONCLUSIONS: In areas where malaria transmission is peri-domestic, there are programmatic options for identifying households where residual infections are likely to be found. Combining these detection strategies with presumptively treating residents of index households over a sustained time period could contribute to malaria elimination efforts

    Heterogeneous malaria transmission in long-term Afghan refugee populations: a cross-sectional study in five refugee camps in northern Pakistan.

    Get PDF
    BACKGROUND: Afghan refugees in northern Pakistan have been resident for over 30 years and current information on malaria in this population is sparse. Understanding malaria risk and distribution in refugee camps is important for effective management both in camps and on return to Afghanistan. METHODS: Cross-sectional malariometric surveys were conducted in five Afghan refugee camps to determine infection and exposure to both Plasmodium falciparum and Plasmodium vivax. Factors associated with malaria infection and exposure were analysed using logistic regression, and spatial heterogeneity within camps was investigated with SatScan. RESULTS: In this low-transmission setting, prevalence of infection in the five camps ranged from 0-0.2 to 0.4-9 % by rapid diagnostic test and 0-1.39 and 5-15 % by polymerase chain reaction for P. falciparum and P. vivax, respectively. Prevalence of anti-malarial antibodies to P. falciparum antigens was 3-11 and 17-45 % for P. vivax antigens. Significant foci of P. vivax infection and exposure were detected in three of the five camps. Hotspots of P. falciparum were also detected in three camps, only one of which also showed evidence of P. vivax hotspots. CONCLUSIONS: There is low and spatially heterogeneous malaria transmission in the refugee camps in northern Pakistan. Understanding malaria risk in refugee camps is important so the malaria risk faced by these populations in the camps and upon their return to Afghanistan can be effectively managed

    Quantifying travel behavior for infectious disease research: a comparison of data from surveys and mobile phones.

    Get PDF
    Human travel impacts the spread of infectious diseases across spatial and temporal scales, with broad implications for the biological and social sciences. Individual data on travel patterns have been difficult to obtain, particularly in low-income countries. Travel survey data provide detailed demographic information, but sample sizes are often small and travel histories are hard to validate. Mobile phone records can provide vast quantities of spatio-temporal travel data but vary in spatial resolution and explicitly do not include individual information in order to protect the privacy of subscribers. Here we compare and contrast both sources of data over the same time period in a rural area of Kenya. Although both data sets are able to quantify broad travel patterns and distinguish regional differences in travel, each provides different insights that can be combined to form a more detailed picture of travel in low-income settings to understand the spread of infectious diseases

    Using health facility-based serological surveillance to predict receptive areas at risk of malaria outbreaks in elimination areas.

    Get PDF
    BACKGROUND: In order to improve malaria burden estimates in low transmission settings, more sensitive tools and efficient sampling strategies are required. This study evaluated the use of serological measures from repeated health facility-based cross-sectional surveys to investigate Plasmodium falciparum and Plasmodium vivax transmission dynamics in an area nearing elimination in Indonesia. METHODS: Quarterly surveys were conducted in eight public health facilities in Kulon Progo District, Indonesia, from May 2017 to April 2018. Demographic data were collected from all clinic patients and their companions, with household coordinates collected using participatory mapping methods. In addition to standard microscopy tests, bead-based serological assays were performed on finger-prick bloodspot samples from 9453 people. Seroconversion rates (SCR, i.e. the proportion of people in the population who are expected to seroconvert per year) were estimated by fitting a simple reversible catalytic model to seroprevalence data. Mixed effects logistic regression was used to examine factors associated with malaria exposure, and spatial analysis was performed to identify areas with clustering of high antibody responses. RESULTS: Parasite prevalence by microscopy was extremely low (0.06% (95% confidence interval 0.03-0.14, n = 6) and 0 for P. vivax and P. falciparum, respectively). However, spatial analysis of P. vivax antibody responses identified high-risk areas that were subsequently the site of a P. vivax outbreak in August 2017 (62 cases detected through passive and reactive detection systems). These areas overlapped with P. falciparum high-risk areas and were detected in each survey. General low transmission was confirmed by the SCR estimated from a pool of the four surveys in people aged 15 years old and under (0.020 (95% confidence interval 0.017-0.024) and 0.005 (95% confidence interval 0.003-0.008) for P. vivax and P. falciparum, respectively). The SCR estimates in those over 15 years old were 0.066 (95% confidence interval 0.041-0.105) and 0.032 (95% confidence interval 0.015-0.069) for P. vivax and P. falciparum, respectively. CONCLUSIONS: These findings demonstrate the potential use of health facility-based serological surveillance to better identify and target areas still receptive to malaria in an elimination setting. Further implementation research is needed to enable integration of these methods with existing surveillance systems

    Updates on malaria epidemiology and profile in Cabo Verde from 2010 to 2019: the goal of elimination.

    Get PDF
    BACKGROUND: Located in West Africa, Cabo Verde is an archipelago consisting of nine inhabited islands. Malaria has been endemic since the settlement of the islands during the sixteenth century and is poised to achieve malaria elimination in January 2021. The aim of this research is to characterize the trends in malaria cases from 2010 to 2019 in Cabo Verde as the country transitions from endemic transmission to elimination and prevention of reintroduction phases. METHODS: All confirmed malaria cases reported to the Ministry of Health between 2010 and 2019 were extracted from the passive malaria surveillance system. Individual-level data available included age, gender, municipality of residence, and the self-reported countries visited if travelled within the past 30 days, therby classified as imported. Trends in reported cases were visualized and multivariable logistic regression used to assess risk factors associated with a malaria case being imported and differences over time. RESULTS: A total of 814 incident malaria cases were reported in the country between 2010 and 2019, the majority of which were Plasmodium falciparum. Overall, prior to 2017, when the epidemic occurred, 58.1% (95% CI 53.6-64.6) of infections were classified as imported, whereas during the post-epidemic period, 93.3% (95% CI 86.9-99.7) were imported. The last locally acquired case was reported in January 2018. Imported malaria cases were more likely to be 25-40 years old (AOR: 15.1, 95% CI 5.9-39.2) compared to those under 15 years of age and more likely during the post-epidemic period (AOR: 56.1; 95% CI 13.9-225.5) and most likely to be reported on Sao Vicente Island (AOR = 4256.9, 95% CI = 260-6.9e+4) compared to Boavista. CONCLUSIONS: Cabo Verde has made substantial gains in reducing malaria burden in the country over the past decade and are poised to achieve elimination in 2021. However, the high mobility between the islands and continental Africa, where malaria is still highly endemic, means there is a constant risk of malaria reintroduction. Characterization of imported cases provides useful insight for programme and enables better evidence-based decision-making to ensure malaria elimination can be sustained

    Use of mobile technology-based participatory mapping approaches to geolocate health facility attendees for disease surveillance in low resource settings.

    Get PDF
    BACKGROUND: Identifying fine-scale spatial patterns of disease is essential for effective disease control and elimination programmes. In low resource areas without formal addresses, novel strategies are needed to locate residences of individuals attending health facilities in order to efficiently map disease patterns. We aimed to assess the use of Android tablet-based applications containing high resolution maps to geolocate individual residences, whilst comparing the functionality, usability and cost of three software packages designed to collect spatial information. RESULTS: Using Open Data Kit GeoODK, we designed and piloted an electronic questionnaire for rolling cross sectional surveys of health facility attendees as part of a malaria elimination campaign in two predominantly rural sites in the Rizal, Palawan, the Philippines and Kulon Progo Regency, Yogyakarta, Indonesia. The majority of health workers were able to use the tablets effectively, including locating participant households on electronic maps. For all households sampled (n = 603), health facility workers were able to retrospectively find the participant household using the Global Positioning System (GPS) coordinates and data collected by tablet computers. Median distance between actual house locations and points collected on the tablet was 116 m (IQR 42-368) in Rizal and 493 m (IQR 258-886) in Kulon Progo Regency. Accuracy varied between health facilities and decreased in less populated areas with fewer prominent landmarks. CONCLUSIONS: Results demonstrate the utility of this approach to develop real-time high-resolution maps of disease in resource-poor environments. This method provides an attractive approach for quickly obtaining spatial information on individuals presenting at health facilities in resource poor areas where formal addresses are unavailable and internet connectivity is limited. Further research is needed on how to integrate these with other health data management systems and implement in a wider operational context

    Factors associated with high heterogeneity of malaria at fine spatial scale in the Western Kenyan highlands.

    Get PDF
    BACKGROUND: The East African highlands are fringe regions between stable and unstable malaria transmission. What factors contribute to the heterogeneity of malaria exposure on different spatial scales within larger foci has not been extensively studied. In a comprehensive, community-based cross-sectional survey an attempt was made to identify factors that drive the macro- and micro epidemiology of malaria in a fringe region using parasitological and serological outcomes. METHODS: A large cross-sectional survey including 17,503 individuals was conducted across all age groups in a 100 km(2) area in the Western Kenyan highlands of Rachuonyo South district. Households were geo-located and prevalence of malaria parasites and malaria-specific antibodies were determined by PCR and ELISA. Household and individual risk-factors were recorded. Geographical characteristics of the study area were digitally derived using high-resolution satellite images. RESULTS: Malaria antibody prevalence strongly related to altitude (1350-1600 m, p < 0.001). A strong negative association with increasing altitude and PCR parasite prevalence was found. Parasite carriage was detected at all altitudes and in all age groups; 93.2 % (2481/2663) of malaria infections were apparently asymptomatic. Malaria parasite prevalence was associated with age, bed net use, house construction features, altitude and topographical wetness index. Antibody prevalence was associated with all these factors and distance to the nearest water body. CONCLUSION: Altitude was a major driver of malaria transmission in this study area, even across narrow altitude bands. The large proportion of asymptomatic parasite carriers at all altitudes and the age-dependent acquisition of malaria antibodies indicate stable malaria transmission; the strong correlation between current parasite carriage and serological markers of malaria exposure indicate temporal stability of spatially heterogeneous transmission
    • …
    corecore