14 research outputs found

    Dandelion plot: a method for the visualization of R-mode exploratory factor analyses

    No full text
    One of the important aspects of exploratory factor analysis (EFA) is to discover underlying structures in real life problems. Especially, R-mode methods of EFA aim to investigate the relationship between variables. Visualizing an efficient EFA model is as important as obtaining one. A good graph of an EFA should be simple, informative and easy to interpret. A few number of visualization methods exist. Dandelion plot, a novel method of visualization for R-mode EFA, is used in this study, providing a more effective representation of factors. With this method, factor variances and factor loadings can be plotted on a single window. The representation of both positivity and negativity among factor loadings is another strength of the method

    Rapid incision of the Mekong River in the middle Miocene linked to monsoonal precipitation

    No full text
    The uplift of orogenic plateaus has been assumed to be coincident with the fluvial incision of the gorges that commonly cut plateau margins. The Mekong River, which drains the eastern Qiangtang Terrane and southeastern Tibetan Plateau, is one of the ten largest rivers in the world by water and sediment discharge. When the Mekong River was established remains highly debated—with estimates that range from more than 55 to less than 5 million years ago—despite being a key constraint on the elevation history of the Tibetan Plateau. Here we report low-temperature thermochronology data from river bedrock samples that reveal a phase of rapid downward incision (>700 m) of the Mekong River during the middle Miocene about 17 million years ago, long after the uplift of the central and southeastern Tibetan Plateau. However, this coincides with a period of enhanced East Asian summer monsoon precipitation over the region compared with the early Miocene. Using stream profile modelling, we demonstrate that such an increase in precipitation could have produced the observed incision in the Mekong River. In the absence of an obvious tectonic contribution, we suggest that the rapid incision of the Tibetan Plateau and the establishment of the Mekong River in the middle Miocene may be attributed to increased erosion during a period of high monsoon precipitation

    Programmed cell death during neuronal development: the sympathetic neuron model

    Get PDF
    Developing sympathetic neurons of the superior cervical ganglion are one of the best studied models of neuronal apoptosis. These cells require nerve growth factor (NGF) for survival at the time that they innervate their final target tissues during late embryonic and early postnatal development. In the absence of NGF, developing sympathetic neurons die by apoptosis in a transcription-dependent manner. Molecular studies of sympathetic neuron apoptosis began in the 1980s. We now know that NGF withdrawal activates the mitochondrial (intrinsic) pathway of apoptosis in sympathetic neurons cultured in vitro, and the roles of caspases, Bcl-2 (B-cell CLL/lymphoma 2) family proteins and XIAP (X-linked inhibitor of apoptosis protein) have been extensively studied. Importantly, a considerable amount has also been learned about the intracellular signalling pathways and transcription factors that regulate programmed cell death in sympathetic neurons. In this article, we review the key papers published in the past few years, covering all aspects of apoptosis regulation in sympathetic neurons and focusing, in particular, on how signalling pathways and transcription factors regulate the cell death programme. We make some comparisons with other models of neuronal apoptosis and describe possible future directions for the field.Cell Death and Differentiation advance online publication, 25 April 2014; doi:10.1038/cdd.2014.47
    corecore