2,088 research outputs found

    Melting and Pressure-Induced Amorphization of Quartz

    Full text link
    It has recently been shown that amorphization and melting of ice were intimately linked. In this letter, we infer from molecular dynamics simulations on the SiO2 system that the extension of the quartz melting line in the metastable pressure-temperature domain is the pressure-induced amorphization line. It seems therefore likely that melting is the physical phenomenon responsible for pressure induced amorphization. Moreover, we show that the structure of a "pressure glass" is similar to that of a very rapidly (1e+13 to 1e+14 kelvins per second) quenched thermal glass.Comment: 9 pages, 4 figures, LaTeX2

    First principles calculation of vibrational Raman spectra in large systems: signature of small rings in crystalline SiO2

    Full text link
    We present an approach for the efficient calculation of vibrational Raman intensities in periodic systems within density functional theory. The Raman intensities are computed from the second order derivative of the electronic density matrix with respect to a uniform electric field. In contrast to previous approaches, the computational effort required by our method for the evaluation of the intensities is negligible compared to that required for the calculation of vibrational frequencies. As a first application, we study the signature of 3- and 4-membered rings in the the Raman spectra of several polymorphs of SiO2, including a zeolite having 102 atoms per unit cell.Comment: 4 pages, 2 figures, revtex4 Minor corrections; accepted in Phys. Rev. Let

    A combined XAS and XRD Study of the High-Pressure Behaviour of GaAsO4 Berlinite

    Full text link
    Combined X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) experiments have been carried out on GaAsO4 (berlinite structure) at high pressure and room temperature. XAS measurements indicate four-fold to six-fold coordination changes for both cations. The two local coordination transformations occur at different rates but appear to be coupled. A reversible transition to a high pressure crystalline form occurs around 8 GPa. At a pressure of about 12 GPa, the system mainly consists of octahedral gallium atoms and a mixture of arsenic in four-fold and six-fold coordinations. A second transition to a highly disordered material with both cations in six-fold coordination occurs at higher pressures and is irreversible.Comment: 8 pages, 5 figures, LaTeX2

    Vaccination with murid herpesvirus-4 glycoprotein B reduces viral lytic replication but does not induce detectable virion neutralization

    Get PDF
    Herpesviruses characteristically disseminate from immune hosts. Therefore in the context of natural infection, antibody neutralizes them poorly. Murid herpesvirus-4 (MuHV-4) provides a tractable model with which to understand gammaherpesvirus neutralization. MuHV-4 virions blocked for cell binding by immune sera remain infectious for IgG-Fc receptor+ myeloid cells, so broadly neutralizing antibodies must target the virion fusion complex – glycoprotein B (gB) or gH/gL. While gB-specific neutralizing antibodies are rare, its domains I+II (gB-N) contain at least one potent neutralization epitope. Here, we tested whether immunization with recombinant gB presenting this epitope could induce neutralizing antibodies in naive mice and protect them against MuHV-4 challenge. Immunizing with the full-length gB extracellular domain induced a strong gB-specific antibody response and reduced MuHV-4 lytic replication but did not induce detectable neutralization. gB-N alone, which more selectively displayed pre-fusion epitopes including neutralization epitopes, also failed to induce neutralizing responses, and while viral lytic replication was again reduced this depended completely on IgG Fc receptors. gB and gB-N also boosted neutralizing responses in only a minority of carrier mice. Therefore, it appears that neutralizing epitopes on gB are intrinsically difficult for the immune response to target

    Big Line Bundles over Arithmetic Varieties

    Full text link
    We prove a Hilbert-Samuel type result of arithmetic big line bundles in Arakelov geometry, which is an analogue of a classical theorem of Siu. An application of this result gives equidistribution of small points over algebraic dynamical systems, following the work of Szpiro-Ullmo-Zhang. We also generalize Chambert-Loir's non-archimedean equidistribution

    Pressure-induced amorphization, crystal-crystal transformations and the memory glass effect in interacting particles in two dimensions

    Full text link
    We study a model of interacting particles in two dimensions to address the relation between crystal-crystal transformations and pressure-induced amorphization. On increasing pressure at very low temperature, our model undergoes a martensitic crystal-crystal transformation. The characteristics of the resulting polycrystalline structure depend on defect density, compression rate, and nucleation and growth barriers. We find two different limiting cases. In one of them the martensite crystals, once nucleated, grow easily perpendicularly to the invariant interface, and the final structure contains large crystals of the different martensite variants. Upon decompression almost every atom returns to its original position, and the original crystal is fully recovered. In the second limiting case, after nucleation the growth of martensite crystals is inhibited by energetic barriers. The final morphology in this case is that of a polycrystal with a very small crystal size. This may be taken to be amorphous if we have only access (as experimentally may be the case) to the angularly averaged structure factor. However, this `X-ray amorphous' material is anisotropic, and this shows up upon decompression, when it recovers the original crystalline structure with an orientation correlated with the one it had prior to compression. The memory effect of this X-ray amorphous material is a natural consequence of the memory effect associated to the underlying martensitic transformation. We suggest that this kind of mechanism is present in many of the experimental observations of the memory glass effect, in which a crystal with the original orientation is recovered from an apparently amorphous sample when pressure is released.Comment: 13 pages, 13 figures, to be published in Phys. Rev.

    Studying the Pulsation of Mira Variables in the Ultraviolet

    Get PDF
    We present results from an empirical study of the Mg II h & k emission lines of selected Mira variable stars, using spectra from the International Ultraviolet Explorer (IUE). The stars all exhibit similar Mg II behavior during the course of their pulsation cycles. The Mg II flux always peaks after optical maximum near pulsation phase 0.2-0.5, although the Mg II flux can vary greatly from one cycle to the next. The lines are highly blueshifted, with the magnitude of the blueshift decreasing with phase. The widths of the Mg II lines are also phase-dependent, decreasing from about 70 km/s to 40 km/s between phase 0.2 and 0.6. We also study other UV emission lines apparent in the IUE spectra, most of them Fe II lines. These lines are much narrower and not nearly as blueshifted as the Mg II lines. They exhibit the same phase-dependent flux behavior as Mg II, but they do not show similar velocity or width variations.Comment: 26 pages, 12 figures; AASTEX v5.0 plus EPSF extensions in mkfig.sty; to appear in Ap

    A test for the search for life on extrasolar planets: Looking for the terrestrial vegetation signature in the Earthshine spectrum

    Full text link
    We report spectroscopic observations (400 to 800nm, R = approx 100) of Earthshine in June, July and October 2001 from which normalised Earth albedo spectra have been derived. The resulting spectra clearly show the blue colour of the Earth due to Rayleigh diffusion in its atmosphere. They also show the signatures of oxygen, ozone and water vapour. We tried to extract from these spectra the signature of Earth vegetation. A variable signal (4 to 10 +/-3%) around 700nm has been measured in the Earth albedo. It is interpreted as being due to the vegetation red edge, expected to be between 2 to 10% of the Earth albedo at 700nm, depending on models. We discuss the primary goal of the present observations: their application to the detection of vegetation-like biosignatures on extrasolar planets.Comment: 7 pages, 7 figures. A&A, accepted 6 May 200
    • …
    corecore